
60    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Functional Thinking
Neal Ford
O’Reilly Media Inc., 2014; 179 pages
ISBN 978-144936551-6
Reviewed by Mark Lamourine

Functional programming has, for a long time, been the realm of
the theorists, the purists, and the AI specialists. Derived directly
from the lambda calculus, the mathematical underpinnings of
computation theory, functional programming has always felt
like it required a different mental model. FP was an alien world.
It didn’t seem like the concepts could be applied without throw-
ing out everything I know and adopting a new programming
language.

While it’s true that some languages make pure functional pro-
gramming easier than others, many languages today provide the
most fundamental feature of functional programming: functions
as first class objects. This means that it’s possible to apply the
concepts of FP even in languages that are not pure functional
languages. Ford does use languages, Scala, Groovy, and Clojure,
that illustrate his ideas clearly, but he also demonstrates code in
Java 7 and 8.

Ford really wants the reader to begin to look at certain classes of
coding problems differently. Each chapter has a word or phrase
that is used to guide the examination. I’m not sure how effective
they are really but they may work for some.

In the first chapter, “Shift,” Ford talks about recognizing list pro-
cessing opportunities. He introduces the MapReduce pattern and
filtering using chained list processing functions. Ford shows in
following chapters how to use higher order functions and recur-
sion to replace iteration (“Cede”), and how to use memoization to
create “lazy” data structures to delay processing (“Smarter, not
Harder”). In “Evolve” Ford introduces Clojure and the concept of
replacing defined data structures with dynamic functions that
both manipulate and represent the program state. The final two
chapters, “Advance” and “Polyglot and Polyparadigm,” introduce
design patterns suited to functional programming and examples
of mixed-style languages and programming practices.

I admit I’m not a convert to pure functional programming. In
the examples given, the code is indeed often more concise than
the comparable object oriented or imperative style. To my aging
eye, the results often smack of cleverness, which can obscure the
intent of the author. I’ve seen and written long strings of chained
functions on lists, and they often seem to reach a point where the
meaning is no longer evident to the reader.

I’m also not a fan of the convention of creating a new function for
every possible variation of operation on some data structure. The
results are an ever increasing catalog of minutely specialized func-
tions that would otherwise be a clean set of methods on a class.

Given all that, I do have a newer appreciation of functional
programming, and I’ll keep an eye out for opportunities to apply
what I’ve learned. Functional Thinking has given me a perspec-
tive on functional programming techniques and philosophy that
I missed when I learned my first functional languages (Com-
mon Lisp and Scheme) in college. I do wish I’d had some of this
perspective then.

SDN: Software Defined Networks
Thomas D. Nadeau and Ken Gray
O’Reilly Media Inc., 2013; 353 pages
ISBN 978-1-449-34230-2
Reviewed by Mark Lamourine

I pick up most books from O’Reilly today expecting to breeze
through the introduction and the first few chapters at least. The
authors of SDN made me work. The subtitle of the book is “An
Authoritative Review of Network Programmability Technolo-
gies,” and I think they live up to it.

Nadeau and Gray have a difficult task, too. To discuss the tech-
nologies that can be used to create and manage programmable
networks, the reader needs first to have some understanding of
the network components themselves. While many sysadmins
are familiar with the use of Layer 2 (switching) and Layer 3 (IP,
routing) devices and the data line protocols, fewer are familiar
with the internal architecture and components of these devices.
To make things more difficult, most of those components have
proprietary names and acronyms or abbreviations.

The authors move very quickly through this first section and
don’t make many concessions to the networking novice. They
introduce the concept of a “Data Plane,” in which the network
payload moves, and a “Control Plane,” which defines the charac-
teristics of the network. The key concept that drives the rest of
the book is the idea of a distributed control plane. In hardware-
defined networks, the control plane is restricted to the individual
switch or router device. In a few kinds of device, blade or stacked
switches and routers, the control plane is abstracted one level
away, but never farther. The abstraction that software offers
opens up the possibilities. In the extreme case, the control plane
could be completely centralized. The topology variations and
their effects on the construction of a network, with the benefits
and flaws, fill the remainder of the chapter.

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  61

BOOKS

This first section lays the necessary groundwork, but I would
have appreciated a bit more help with understanding the typi-
cal components, their relationships and interactions in a static
hardware network. This is the base on which the rest of the book
is built. I think they could have spent some more effort to make
this truly complex topic clearer.

The second chapter introduces OpenFlow, which the authors use
as a touchstone. It sets a baseline against which the rest of the
software in the book is compared. OpenFlow is the result of the
first attempt at a software-defined network. While it has gained
support both from corporate and open source contributors, it
is largely acknowledged to be insufficient to create a complete
network by itself.

Nadeau and Gray proceed to move from the lowest level of net-
work control up to building complete virtual network topologies
on top of the same physical hardware that carries packets from
one place to another. This is a technical review, so the authors
list and describe the software capabilities and characteristics,
not how to configure or use them in operations.

Software-defined networks are an incomplete and evolving sub-
ject. The body of the book alternates between lists of vendor and
open source technologies and some discussion of how they fit
into a programmed network. The end of each chapter is a short
section in which the authors sum up what we’ve learned and
where the gaps still are.

This book does a good job of illuminating the state of software-
defined networks once the authors get past the details of the
characteristics of distributed or centralized control. Unfortu-
nately, the field has changed dramatically even in the year since
it was published. The introduction (and withdrawal) of Open-
Stack Quantum and the stumbles of OpenStack Neutron are just
a couple of the developments in the SDN space. There are signs
sprinkled throughout the text that the authors recognize this
and plan to issue updates, but it’s not clear when.

Given the current movement toward cloud computing, I’ve
concluded that the role of a sysadmin is expanding rather than
contracting. The operator of an OpenStack or commercial cloud
service will need to have at least some expertise in all of the tra-
ditional enterprise IT silos: Compute, Storage, and Networking.
A book like SDN might be the best way for someone who needs to
get a handle on the problems and possibilities to get conversant.

The Practice of Cloud System Administration
Thomas Limoncelli, Strata R. Chalup, Christina J. Hogan
Addison-Wesley, 2015, 524 pages
ISBN: 978-0-321-94318-7
Reviewed by Mark Lamourine

System administrators are not known for consensus and con-
formity. It doesn’t take long for new admins to fall in love with a
tool or a programming language (or to fall into hate). The Editor
Wars are probably the most well known ongoing dividing line,
but faults can appear around any choice we can make.

This is what makes the books by Limoncelli, Chalup, and Hogan
(LC&H) so remarkable. If you ask most sysadmins what single
book they should read, the answer will almost certainly be The
Practice of System and Network Administration. They’re going
to have a harder time now, with the release of volume 2: The
Practice of Cloud System Administration. (Just so you know,
it’s already known by the abbreviation TPOCSA.) I think this is
likely to become a must-read.

One of the tenets of TPOCSA (and of all quality design) is “Keep
it Simple.” The authors present cloud administration in two
parts. Pretty simple, eh? First, they define the characteristics of
their ideal system, then they go on to describe the methods that
they use to try to achieve that ideal.

When I say “describe the system” I mean that in a somewhat
abstract way. LC&H aren’t talking about which database is best
or how much memory you need to render a movie frame. It turns
out that all large-scale distributed systems have a set of common
characteristics. These, along with the requirements for high
reliability and robustness, have led to a set of best practices that
have become generally accepted, largely because they have been
shown to work. The hitch is that most of them seem counterin-
tuitive and nearly all directly contradict standard practices of
two decades ago.

In this section the authors also make clear the scope of what
“system administration” means. Up until the advent of virtual-
ization and ubiquitous high-speed networks, it meant OS instal-
lation and some network configuration. When the machine was
ready it would be handed off to some application and operations
team for the rest of the lifetime of a host. The SA tasks would
probably include backups and periodic patching (or at least that’s
what many people thought). Today system administration and
operations are largely synonymous. This union even has a word:
DevOps (which is contentious, so I won’t discuss it further here).

So we’re talking about a large-scale distributed system. When-
ever you have something big and made up of lots of parts, you
inevitably have failures. Much of the rest of the book consists
of ways to make that not matter, taking human nature and the
“physics” of highly complex systems into account to make robust
seamless services that run well even as they are changing.

62    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

BOOKS

Scanning over the chapter headings after the section break, I
am struck by something that should have been obvious. This
is a book about practices. The first section is really a glos-
sary, a base of terminology and concepts on which to build. But
what we build from them, the system that results, isn’t just the
cloud application. The infrastructure that LC&H are talking
about here is as much a social one as it is technical. Each of the
computational components is meant either to facilitate human
communication or to remove painful, time-consuming, or error
prone tasks.

System administrators are no longer just brick layers and jani-
tors. They are involved in every phase of application life cycle
from inception to a long continuously evolving life span. LC&H
discuss the philosophy and practice of each phase, always
considering that humans are expensive (and error prone) while
computation is cheap. Automation, documentation, and moni-
toring are all reconsidered with an eye to minimizing drudgery
and false rigor and replacing it with a min-set that will evaluate
what’s really important: comprehension and communication.

I read Gene Kim’s The Phoenix Project not long after it came out,
and while I smiled and nodded knowingly all the way through,
it felt a little like a unicorn story. I thought, “This is nice, but no
one in business is going to take a novel seriously as a model for
business practice.” Of course I was wrong, but I still think that
something more is needed, not just a parable but a manual. The
line where the authors cite Gene for “inspiration and encourage-
ment” indicates that LC&H thought so, too.

There really wasn’t much in this book that was new to me. I
think much of what’s here is already fairly common knowledge.
What TPOCSA has done is to bring together in one place the
accumulated body of knowledge that has been growing and
changing since the birth of the Internet. Today’s computer
systems are a far cry from the mainframes, minicomputers, and
PCs that dominated the 1990s. There have been a number of
movements triggered by the changes since then: Agile devel-
opment, the DevOps movement, Continuous Integration and
Deployment. TPOCSA brings them all together and reminds us
that the methodology, the philosophy, the ideology are not what
matters. The system, running and serving reliably, is what mat-
ters. All of the rest are just means to that end.

So who should read it? I think anyone claiming to be a system
administrator today should be conversant with what’s here, but I
think the bigger impact will come when we pass it to a colleague,
whether a developer or a manager. There’s a lot of confusion
around what cloud computing means, and TPOCSA gives us a
common base on which to build our systems and our processes.

What If? Serious Scientific Answers to Absurd
Hypothetical Questions
Randall Munroe
Houghton, Mifflin, Harcourt, 2014; 305 pages
ISBN 978-0-544-27299-6
Reviewed by Rik Farrow

You are likely familiar with xkcd, the comic strip that uses stick
characters to great effect. You may not have heard of another
project by Munroe, where he answers questions submitted to
him, using math and research, to provide sound answers to some
very strange queries. I had encountered a couple of Munroe’s
posts while searching xkcd.org, looking for potential cartoons
to decorate a ;login: issue, and learned that he was publishing an
entire book of answers.

Well, not quite. Munroe interspaces his answers with sets of
questions that he wouldn’t answer, adding more humor to his
book. And like the Mythbusters, Munroe will often take a ques-
tion, provide an answer, then scale the question up, to prove a
point, like how many people with laser pointers would it take to
light up the dark portion of the moon, or his hair dryer that has
ten settings, each using an order of magnitude more power. Mun-
roe uses scaling and statistics in ways that are effective.

I’ve used Munroe’s What If? as a great way of taking a break
away from my computer, and think it would be an appropriate
gift to most geeks and/or scientists that you may have in your
life. You might also be able to use Munroe’s writing as inspira-
tion for how to answer those ridiculous questions you may have
been asked by your management, although I do advice caution in
these circumstances.

