
2    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve often written about how depressing I find computer security is for the

December issue, so this year I thought I’d try a different tack. Honestly,
there were parts of USENIX Security, particularly the WOOT workshop,

that had me laughing out loud.

I really liked the “Fast and Vulnerable” [1] paper for its humorous insights into the state of
programming. A widely used product, one that is Internet-connected and can be used to
control cars, totally fails at having any security at all. What a laugh! They even included the
private SSH key for the root account for the device—and the same key is used on all devices by
this manufacturer.

Not that SSH is needed at all: just a simple SMS message to the device can be used to instruct
it to download a software update. That’s right. All you need is a phone number and to send a
text message, and you can “own” someone else’s car. And the phone number could be war-
dialed. As if this weren’t enough, there’s also a Web and a Telnet interface you can use.

Programmers
I’ve heard Wietse Venema and D. J. Bernstein’s names mentioned many times at USENIX
Security as the only people who have a proven track record for writing secure software. That
should give you food for thought: if just these two guys have done it right, that implies every-
one else is doing it wrong.

And that seems to be about right. Getting the security right is very hard; even the best
programmers often make exploitable mistakes, and I think we should assume that the best
programmers are a tiny minority. That leaves about six nines, or 99.9999% of programmers
among those who are not the best. Then what those statements about Venema/Bernstein
really mean is that effectively no one can write software securely.

A large part of the problem has to do with the nature of programming. Someone, hopefully a
skilled programmer, gets tasked with creating software that will convert requests into the
appropriate responses. In most cases, the programmer writes a list of instructions, does some
testing, then keeps working on the software until it appears to work.

Nowhere in that outline of the programming task does the concept of security even appear.
If security does come up, the requirement is often something like “must include crypto,” and
the programmer then adds a function with a hash check or perhaps XORs something so the
program includes encryption. Perhaps the programmers are more advanced and decide they
will use a library in OpenSSL, but because they don’t understand cryptography they use weak
keys and repeat the same initialization vector with every request.

I used to laugh at early attempts to port Microsoft MS-DOS programs to UNIX. The authors
didn’t understand the UNIX security model, so they would run their software as root. All files
would be publicly writeable by all, too. For someone coming from the MS-DOS world, where
there was no security, this was the equivalent security “ported” to UNIX.

mailto:rik@usenix.org
http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  3

EDITORIAL
Musings

In the research for “Fast and Vulnerable,” the programmers/
designers for the car-connected device didn’t do much better.
They did have a root password and a user password (for the
user named “user”), but they were trivially cracked. You can
query, update, or control the device either locally, over a network
connection (via a USB port), or remotely, as the Web and Telnet
services appear both locally and remotely. And since this device
connects to the OBD-II port on US-built cars, you can play the
types of tricks with the car as Miller and Valasek did with the
entertainment head found in new Chrysler Jeeps [2].

The Question
Finding vulnerable devices online is nothing new. Companies
have created everything from routers to medical devices that
appear online, have software with exploitable vulnerabilities,
and provide no mechanism for updating the software of these
devices, and this has been true for about as long as there has
been a public Internet (1991). You might think that we, the
computer science community, might try and do something about
this sorry state of affairs. And we have, but because security isn’t
easy, things haven’t worked out so well.

Let’s take a look at a couple of recent attempts to provide security
for applications that assume that programmers shouldn’t be
expected to do this themselves: Android and iOS. Of the two, iOS
has a stricter model, which has worked well until XcodeGhost [3]
came along. By adding a Trojan object file to the Xcode develop-
ment framework, used to write applications for iOS, applica-
tions would include the Trojan binary. And Apple accepted
these applications into the Apple App Store, as the applications
appeared to follow the rules. Ooops.

Android has fared much worse for a couple of reasons. Google
never wanted, or could have, the same degree of control over
the apps market for Android, and that has opened the field to
malware. And second, the model chosen for Android was never
intended to be as robust. When I first heard about the Android
security model, at a USENIX Security Symposium in Mon-
treal (2009), I heard that the model would partially rely on
people noticing and complaining about insecure apps. Also,
users would be expected to decide whether or not to allow apps
access to their devices, with over 140 different types of access
potentially allowed. I made a point of speaking with the program
manager, and when I complained to him that they expected way
too much from Android users, he told me that it was too late to
change the design.

Google has recently updated the Android security design [4], but
the user still must make security decisions, and those decisions
are still all or nothing. For example, if you want to use the Uber
app, you grant Uber complete access to your phone and personal
information. I found that very interesting. I also know that lots

of people are willing to trust Uber, the corporation, and Uber
programmers, with complete access to their phones. Really?
Have you done that?

Google has created a new sandbox, without any access permis-
sions, that apps can be run in. Another of my favorite papers
at Security, “Boxify: Full-Fledged App Sandboxing for Stock
Android” [5], will allow knowledgeable programmers to run
other people’s apps inside a permissionless sandbox, and have
finer-grained control over what personal data we are willing to
share and when. What distinguishes the new sandbox from the
old one is the ability to run unmodified apps, regardless of what
permissions the app programmers have asked for (everything if
you’re Uber), and decide to grant access to a selected set when
executed, instead of at install time.

Microsoft got serious about security in 2001. Just this year, they
replaced the default browser, IE, with something better. Apple
and Google have always been serious about security, but their
results have been mixed so far. Keep in mind that iOS in China,
where lots of iPhones are jailbroken, is on a par with Android in
the rest of the world. None of this is easy.

To sum up, we have a history of programmers being unable to
write programs securely. We have vendors who are unable to
provide secure environments in which to run insecure apps. So
why are we at all surprised at the lack of security today?

The Lineup
I was so impressed with Ian Foster’s WOOT ’15 presentation
about finding weaknesses in an OBD II device that I asked
him and one of his co-authors (Karl Koscher) if they would
write about CAN bus for ;login:. Understanding CAN bus is
the key to understanding how modern cars work—and why we
see remote hacks of cars that might appear to be magic if we
didn’t know better.

Roel Verdult and Flavio Garcia explain the problems found
in Megamos, a widely used automobile immobilizer. In what
could be seen as a reprise to the theme of my editorial, Verdult
and Garcia analyzed both the immobilizer itself and how it has
been used in many brands of automobiles, showing that indeed,
programmers cannot program securely and vendors don’t under-
stand cryptography.

Simson Garfinkel volunteered an article on digital forensics.
Fresh from chairing the DFRWS 2015 conference, Simson
provides us with a clear view of how the field of digital forensics
has grown both broader and more challenging over time. Both a
current researcher and an accomplished writer, Simson takes
us through from the early days of cloning drives to modern tools
that can analyze the vast amount of data found on our digital
devices and networks.

4    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

EDITORIAL
Musings

I met John Murray during the USENIX Security ’15 poster ses-
sion, where he was explaining the Menlo Report to anyone who
would listen. I’d only that afternoon heard of the Menlo Report,
during a panel session by past program committee members
discussing how they handle ethical lapses in submitted papers. I
asked John if he could tell us more about how the Menlo Report
provides a better basis for institutional review boards (IRBs)
considering security research proposals.

I’ve known Rick Forno for many years, from when he worked for
the early US Internet name registry. Rick offered to share five
years of experience running the Maryland Cyber Challenge, a
cyber competition that allows participants at different levels of
education and experience to learn together.

Andy Seely has written a summary of his 11 columns on manag-
ing system administrators. If you missed any of his past col-
umns, you can review the useful practices that Andy has shared,
as well as locate the columns you either missed or find that you
now need.

I interviewed Darrell Long (UCSC) about how the actual arrival
of a real non-volatile memory (NVM) RAM product will affect
the world of computing. The answer? You need to read the inter-
view, but I can tell you here, this is big.

Peter Salus writes his final USENIX history article and dis-
cusses the founding of the Software Tools User Group (STUG)
and LISA. If you’ve ever wondered where USENIX came from,
who came up with that name, I suggest you read all of Peter’s
articles. They aren’t that long but do put the past of USENIX in
perspective.

I also interview Rob Kolstad. Rob was elected to the USENIX
Board three times and started the LISA conference. Rob is an
amazing guy, and you can find hints of this by reading this inter-
view, as well as another look at where USENIX has come from
and what happened in the past to make it the organization that it
is today.

Dave Beazley waxes enthusiastic about the new asynchronous
I/O (asyncio) module in Python 3.5. As Dave writes, this will
blow your mind if you are already familiar with past asyncio
Python modules. More practically, you will learn the current
direction for handling thousands of threads of activity using
coroutines.

David Blank-Edelman took up the challenge I tossed him when
he submitted his October column and worked up some Perl script
magic for using OAuth2. OAuth2 is more than an authentica-
tion protocol, as OAuth2 tokens are used for delegating access to
resources on other folks’ servers. David’s column covers check-
ing all of the Google Calendars shared with you for events that
may be bugging you with daily notifications, perhaps while the
person involved is off on vacation.

Dave Josephsen discusses monitoring for programmers. While
we usually think of monitoring as a task belonging to system
administrators and SREs, Dave reminds us that developers need
to understand what types of events they should be reporting in
their code.

Robert Ferrell uses his fertile imagination to come up with a
new form of secure email, Streamailer, and also addresses how
difficult change in any form is for many people, and ends with a
new technique for authentication.

We have book reviews by both Mark Lamourine and myself.
Mark reviewed Python for Data Analysis and an introductory
book on Go, while I reviewed the Donovan and Kernighan
Go book.

Restarting
I believe that if people are allowed to do anything, including
things harmful to themselves or others, someone will try to do
those harmful things. And it appears that humanity in general
agrees with this belief, as we have laws and customs that set
constraints on behavior. We drive on a particular side of roads,
do not pick up apples at a farmer’s market and walk off with them
without paying, throw stones or shoot at passersby, and so on.
We live in a civil society (for the most part).

But in the world of programming, we have few constraints. The
“Fast and Vulnerable” [1] paper clearly shows what happens
when programmers are set free of the constraints of security to
design a product that, when misused, can kill people.

I also believe that people are much more comfortable with
constraints that appear natural. We all learn as children that
when we jump up, we quickly fall back to earth, if we eat too
much, our stomach starts hurting, and so on. These are natural
constraints, and they work for the most part (see 72-ounce steak
rules [6]), for most people.

That said, I also believe that we need programming environ-
ments where writing secure code comes naturally. I believe we
can do that with modern languages and a structure of natural
constraints that encourage writing small modules that require
least privileges, as Venema and Bernstein have been showing us
for years.

When we, the culture of computer scientists, began writing pro-
gramming languages, we needed something better than writing
in machine language, and we got FORTRAN and COBOL. We’ve
come a long way since then, but it’s painfully obvious we still
have a long way to go.

There is another important leg to having an environment where
secure programming feels natural, and that is the hard part:
hardware. Our programming environment matches our hard-
ware architecture, where even a smartwatch has an architecture

http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  5

EDITORIAL
Musings

References
[1] I. Foster, A. Prudhomme, K. Koscher, S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” in the Proceedings
of the 9th USENIX Workshop on Offensive Technologies
(WOOT ’15), August 2015, Washington, DC.

[2] Andy Greenbaum, “Hackers Remotely Kill a Jeep on the
Highway—With Me in It,” July 21, 2015: http://www.wired
.com/2015/07/hackers-remotely-kill-jeep-highway/.

[3] http://researchcenter.paloaltonetworks.com/2015/09
/novel-malware-xcodeghost-modifies-xcode-infects-apple
-ios-apps-and-hits-app-store/.

[4] Security-Enhanced Linux in Android: https://source
.android.com/devices/tech/security/selinux/index.html.

[5] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky, “Boxify: Full-
Fledged App Sandboxing for Stock Android,” in the Proceed-
ings of the 24th USENIX Security Symposium, August 2015,
Washington, DC, pp. 691–706: https://www.usenix.org
/conference/usenixsecurity15/technical-sessions
/presentation/backes.

[6] The 72 oz. Steak Rules: http://bigtexan.com/72oz-steak
-rules/.

[7] http://www.rikfarrow.com, Design for Security.

that evolved from 1960 mainframes. We are still building time-
sharing systems, even now that we can put tens of cores on a tiny
chip. Those cores, properly connected, could form the basis for
many small services that work today.

There’s even a name for those services that has become quite
popular: microservices. Let’s build the architecture [7] for
running those microservices natively and securely, and design
a software architecture that makes programming securely
natural.

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our conferences
 proceedings and videos. We stand by our mission to foster excellence and innovation while
supporting research with a practical bias. Your financial support plays a major role in making
this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX Annual Fund,
renew your membership, and ask your colleagues to join or renew today.

Do you know about the
USENIX Open Access Policy?

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://source.android.com/devices/tech/security/selinux/index.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
http://bigtexan.com/72oz-steak-rules/
http://www.rikfarrow.com
http://www.usenix.org/annual-fund
http://www.usenix.org

