
48    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

COLUMNS
Python 3.5 was released to the world on September 13, 2015. Included

in this release was a substantial upgrade to asynchronous I/O support
in the asyncio module, including brand new syntax in the Python

language itself [1]. In this article, we dive into modern asyncio and take it
for a test drive on code involving low-level socket programming, high-level
sockets, HTTP clients, and HTTP servers. Prepare yourself for the unex-
pected—this is not the Python you know. Just to be clear, you’ll need Python
3.5 or newer to try the examples.

But First, Some Beckett
To be honest, I’ve never considered myself to be much of a theater nut. In fact, my wife often
teases me about how easily I fall asleep at shows. However, much to her chagrin, I find myself
to be a huge fan of Samuel Beckett plays. For reasons that will become clear shortly, the title
of this article is a reference to Beckett’s most famous work, “Waiting for Godot,” a play in
which nothing actually seems to happen! I like such plays—they’re easier to follow.

Beckett plays are not your ordinary kind of theatrical affair. For example, a few years back, I
found myself riveted during a production of Krapp’s Last Tape, a play where not a single word
is spoken for the first 25 minutes. Instead the main character slowly paces around stage
eating a banana—deep in thought. What is this? What is going on here? Or as a more extreme
example, there is Beckett’s Play—a production in which three motionless heads, situated
atop funeral urns, talk frenetically amongst themselves at such a rapid pace, you can’t make
any sense of what is actually happening or what it is about. The play suddenly ends, the stage
lights go out, and you’re left wondering, “WHAT was THAT?” No, wait, the lights come back
on and they simply repeat the whole play word-for-word start-to-finish again. What? As I
said, Beckett plays defy convention.

This brings me to the topic of this article—asynchronous I/O and Python’s new asyncio
module. Like a Beckett play, asyncio defies normal Python conventions. At times, I don’t
know what exactly I’m looking at, and I’m not even sure if I like it. However, it’s never boring.
If anything, understanding asyncio will push your Python knowledge to the very edge of
what’s possible. First added in Python 3.4, asyncio’s goal was to reboot Python’s support for
asynchronous I/O and to take advantage of programming techniques involving advanced
use of generator functions. However, in Python 3.5, it has taken flight with new language
syntax and constructs. To the uninitiated, the code looks foreign and crazy. Is this even
Python? What is this? What is going on?! As a whole, the Python community tends toward
the conservative (just consider the number of people still using Python 2). Yet Python 3.5
might represent the most radical departure from the ordinary that I can recall in my nearly
20 years of Python coding. Yes, it’s that different.

Although asyncio has been brewing in Python for a few years, I’ve never really quite figured
out how to tackle it as a topic. Should I dive into its history and talk about the internals that
make it work? Or should I just throw people into the deep end of the pool and see what hap-
pens? This article takes the latter approach. Assuming you have never done any prior async

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Awaiting for Godot
D A V I D B E A Z L E Y

http://www.swig.org
http://www.dabeaz.com/ply.html
http://www.dabeaz.com/ply.html
mailto:dave@dabeaz.com
http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  49

COLUMNS
Awaiting for Godot

programming in Python and know nothing about past efforts,
what does it look like in Python 3.5? This is what we’re going to
find out. Part of the exercise is to see if using asyncio can be as
easy and useful as more traditional parts of Python.

Some Background
Before beginning, it’s useful to know why you might consider
asynchronous I/O. In many modern network applications, it is
common to have to a huge number of connected clients. These
clients typically don’t involve tons of high-bandwidth I/O—it’s
just that there are a lot of them (imagine a single server pro-
cess with 10,000–20,000 open clients). Classic techniques for
managing concurrency such as threads and processes have
known limitations working with such a large number of cli-
ents. Asynchronous I/O takes a different approach. Typically, a
single process runs an event-loop that polls for activity on all of
the clients and handles it in some way, such as triggering event
callback functions. However, callbacks have their own problem—
leading to what’s commonly referred to as a kind of “callback
hell” of spaghetti code.

The asyncio module takes a different approach involving corou-
tines. Coroutines look a lot like normal synchronous code but
are driven by an event loop under the covers. This tends to lead
to code that is much easier to write and reason about. However,
coroutines are not the same as ordinary functions or procedures.
Thus, Python’s asyncio module has a rather different flavor than
the rest of the standard library.

To explore asyncio, we will look at four common problems
involving network programming: programming directly with
sockets, creating high-level socket servers, interacting with
HTTP services, and creating a simple HTTP server. You’ll prob-
ably want to hang on for the ride. Let’s begin.

Low-Level Socket Programming
One of my first uses of Python involved writing simple network
services directly using sockets [2]. Having previously written
such code in C, it was an enlightening experience to see how easy
it was in Python. For example, here is a simple multithreaded
echo-server:

A simple echo server using sockets and threads

from socket import *

from threading import Thread

def echo_server(address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 client, addr = sock.accept()

 print(‘Connection from:’, addr)

 Thread(target=echo_client, args=(client,),

 daemon=True).start()

def echo_client(client):

 while True:

 data = client.recv(1000)

 if not data:

 break

 client.sendall(data)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 echo_server((‘’, 25000))

It’s simple, yet perhaps a bit dicey with the potential for unlim-
ited thread creation as the number of clients increases.

As a first test of asyncio, let’s see if we can write the same code
without much fuss. Here is a direct translation of the code to an
asynchronous version:

A simple server using asyncio and sockets

from socket import *

import asyncio

async def echo_server(loop, address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 sock.setblocking(False) # Critical

 while True:

 client, addr = await loop.sock_accept(sock)

 print(‘Connection from:’, addr)

 task = loop.create_task(echo_client(loop, client))

async def echo_client(loop, client):

 while True:

 data = await loop.sock_recv(client, 1000)

 if not data:

 break

 await loop.sock_sendall(client, data)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 loop = asyncio.get_event_loop()

 loop.run_until_complete(echo_server(loop, (‘’, 25000)))

http://www.usenix.org

50    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

COLUMNS
Awaiting for Godot

At first glance, this code will shatter your mind. async def and
await? What is this business? It’s new Python syntax related to
asynchronous programming. The async def statement declares
a function as a coroutine that must be managed by an event loop.
The await statement is used to execute a coroutine and return its
result. The two statements are meant to work together.

As noted, the execution of the code requires the use of an under-
lying event loop. The asyncio.get_event_loop() and loop.

run_until_complete() calls at the end of the program show how
you obtain a reference to the loop and initiate execution of the
program.

Other operations in the code have changed into methods involv-
ing the event loop. For example, the loop.sock_recv(), loop.

sock_accept(), and loop.sock_sendall() carry out the standard
socket operations. The loop.create_task() method launches a
new task much like the creation of a thread.

If you run the code, you’ll find that it works just as it did before.
Concurrent connections also work fine even though no threads
or subprocesses are involved. Great!

High-Level Sockets
For most, directly programming with sockets is not the most
ideal way to write network applications. Python has long
provided a higher-level interface in the socketserver module
(named SocketServer in legacy Python) [3]. Here is another
implementation of an echo server using the streams interface of
socketserver:

Echo server using socketserver

from socketserver import (

 StreamRequestHandler,

 ThreadingTCPServer

)

class EchoHandler(StreamRequestHandler):

 def handle(self):

 print(‘Connection from:’, self.client_address)

 for line in self.rfile:

 self.wfile.write(line)

 print(‘Connection closed’)

if __name__ == ‘__main__’:

 serv = ThreadingTCPServer((‘’, 25000), EchoHandler)

 serv.serve_forever()

In this code, the EchoHandler class has rfile and wfile attri-
butes, which operate like files for reading and writing network
data. A simple for-loop can be used to read line-by-line as shown.
This loop will terminate when the connection is closed.

As a second test of asyncio, can we write a similar high-level
program? Here is the answer:

Echo server using asyncio and streams

import asyncio

async def handle_echo(reader, writer):

 print(‘Connection from:’, writer.get_extra_info(‘peername’))

 async for line in reader:

 writer.write(line)

 await writer.drain()

 print(‘Connection closed’)

 writer.close()

if __name__ == ‘__main__’:

 loop = asyncio.get_event_loop()

 coro = asyncio.start_server(handle_echo, ‘’, 25000, loop=loop)

 server = loop.run_until_complete(coro)

 loop.run_forever()

Although the code is packaged in a slightly different way (no
need for a class definition), it is comparably short and similar in
logic. You’ll find that it handles concurrent client connections
even though no threads are being used.

Again, async def is being used to declare the handler as corou-
tine. The await writer.drain() statement waits for the written
data to be successfully sent. A new mystery arises in the async

for statement. What in the world is that? In short, it’s a for-loop
whose iteration requires coordination with the event loop (e.g.,
the event loop has to suspend the code and resume it when data
actually arrives). If you don’t use async for, the code would
change slightly to the following:

async def handle_echo(reader, writer):

 print(‘Connection from:’, writer.get_extra_info(‘peername’))

 while True:

 line = await reader.readline()

 if not line:

 break

 writer.write(line)

 await writer.drain()

 print(‘Connection closed’)

 writer.close()

That’s not nearly as elegant. Besides, dropping some Python code
with an async for loop in it on your coworkers will be a good
thing for them. Do it.

http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  51

COLUMNS
Awaiting for Godot

Making HTTP Requests
One of my favorite libraries for interacting with the Web is the
requests library [4]. Using it is easy:

>>> import requests

>>> r = requests.get(‘http://www.python.org’)

>>> print(r.text)

... see returned result ...

It’s almost too easy. Of course, a really good request needs some
threads. And threads need semaphores. And why not a queue for
good measure? Behold:

get.py

#

Fetch data from a collection of URLs using requests and threads

import requests

from queue import Queue

from threading import Thread, Semaphore

max_active = Semaphore(4)

def url_worker(url, result_queue):

 with max_active:

 r = requests.get(url)

 result_queue.put((url, r.status_code, r.text))

def get_urls(urls):

 result_queue = Queue()

 # Launch workers

 workers = []

 for url in urls:

 worker = Thread(target=url_worker, args=(url,

 result_queue))

 worker.start()

 workers.append(worker)

 # Wait from the workers to finish and collect results

 results = { }

 for worker in workers:

 worker.join()

 url, status, text = result_queue.get()

 results[url] = (status, text)

 return results

if __name__ == ‘__main__’:

 urls = [

 ‘https://docs.python.org/3/library/asyncio.html’,

 ‘https://docs.python.org/3/library/select.html’,

 ‘https://docs.python.org/3/library/threading.html’,

 ‘https://docs.python.org/3/library/selectors.html’,

 ‘https://docs.python.org/3/library/queue.html’,

 ‘https://docs.python.org/3/library/socket.html’,

 ‘https://docs.python.org/3/library/socketserver.html’,

]

 result = get_urls(urls)

In this program, the get_urls() function takes a list of URLs
and spawns a collection of worker threads to fetch data concur-
rently. The workers are throttled using a semaphore. Results are
returned via a queue. The final result is a dict mapping URLs to
a status code and text from the response. It’s a program that only
a parent process could love. Take that async!

A similar program can be written for asyncio using the third-
party aiohttp library [5]. Using that, here’s an async version:

aget.py

#

Fetch data from a collection of URLs using

aiohttp and asyncio

import aiohttp

import asyncio

max_active = asyncio.Semaphore(4)

async def url_worker(url, result_queue):

 async with max_active:

 r = await aiohttp.get(url)

 await result_queue.put((url, r.status,

 await r.text()))

async def _get_urls_task(urls, loop):

 result_queue = asyncio.Queue()

 # Launch workers

 workers = []

 for url in urls:

 worker = loop.create_task(url_worker(url,

 result_queue))

 workers.append(worker)

 # Wait for the workers to finish

 results = { }

 for worker in workers:

 await asyncio.wait_for(worker, timeout=None)

 url, status, text = await result_queue.get()

 results[url] = (status, text)

 return results

def get_urls(urls):

 loop = asyncio.get_event_loop()

 result = loop.run_until_complete(_get_urls_task(urls, loop))

 return result

http://www.usenix.org

52    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

COLUMNS
Awaiting for Godot

if __name__ == ‘__main__’:

 urls = [

 ‘https://docs.python.org/3/library/asyncio.html’,

 ‘https://docs.python.org/3/library/select.html’,

 ‘https://docs.python.org/3/library/threading.html’,

 ‘https://docs.python.org/3/library/selectors.html’,

 ‘https://docs.python.org/3/library/queue.html’,

 ‘https://docs.python.org/3/library/socket.html’,

 ‘https://docs.python.org/3/library/socketserver.html’,

]

 result = get_urls(urls)

Does it work? You bet, but there are a variety of details. First,
the aiohttp module provides its own get() method for making
an HTTP request. It’s similar to the requests library except
that you need to use r = await aiohttp.get() when making the
request and await r.text() to obtain the downloaded data.

Next, the asyncio module provides its own version of syn-
chronization primitives and queues. So the code uses asyncio.

Semaphore and asyncio.Queue. The async with max_active
statement in url_worker performs an asynchronous acquisi-
tion of the associated semaphore. All queueing operations are
prefaced by the await keyword to indicate their asynchronous
nature. The asyncio.wait_for() call waits for a task to finish.
In many ways, it’s not too dissimilar from threads. One subtle
aspect concerns the separate _get_urls_task() and get_urls()
functions. With asyncio nothing happens unless someone drives
the underlying event loop. Thus, the get_urls() function works
by setting up the calculation and driving the loop until the result
comes back.

Stepping back for a moment, the only purpose of the queue in the
threading example is to deal with the fact that there is no clean
way to communicate results back from worker threads. It turns
out you can eliminate it from the asynchronous code entirely.
Here’s a slightly modified version that is a bit cleaner:

import aiohttp

import asyncio

max_active = asyncio.Semaphore(4)

async def url_worker(url):

 async with max_active:

 r = await aiohttp.get(url)

 return url, r.status, await r.text()

async def _get_urls_task(urls, loop):

 # Launch workers

 workers = []

 for url in urls:

 worker = loop.create_task(url_worker(url))

 workers.append(worker)

 # Wait for the workers to finish

 results = { }

 for worker in workers:

 url, status, text = await asyncio.wait_for(worker,

 timeout=None)

 results[url] = (status, text)

 print(url, status)

 return results

asyncio provides a fairly complete set of primitives normally
associated with thread programming. These include locks,
semaphores, events, queues, and more. Although these objects
do not provide 100% compatibility with their threading coun-
terparts, it seems that many programs written for threads could
probably be adapted to asyncio in a straightforward way.

Writing a Web Service
As a final test, let’s write a simple Web service. In this example, the
third-party bottle library is used to implement an endpoint that
computes Fibonacci numbers, returning the result as JSON [6]:

Simple web service using bottle

import bottle

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

@bottle.route(‘/fib/<n>;’)

def serv_fib(n):

 result = fib(int(n))

 return { ‘result’: result }

if __name__ == ‘__main__’:

 bottle.run(host=’’, port=25000, debug=True)

Connect to the service using a URL such as http://localhost:

25000/fib/6 on your machine. Replace n by an integer number
such as 6. You should get a response such as this:

{“result”: 8}

Can this code be replaced by an asynchronous version? aiohttp
to the rescue!

Simple web service using aiohttp

from aiohttp import web

import asyncio

import json

http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  53

COLUMNS
Awaiting for Godot

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

async def fib_handler(request):

 n = int(request.match_info[‘n’])

 result = fib(n)

 resp = { ‘result’: result }

 return web.Response(text=json.dumps(resp),

 content_type=’application/json’)

def run(address):

 loop = asyncio.get_event_loop()

 app = web.Application(loop=loop)

 app.router.add_route(‘GET’, ‘/fib/{n}’, fib_handler)

 srv = loop.create_server(app.make_handler(), *address)

 loop.run_until_complete(srv)

 loop.run_forever()

if __name__ == ‘__main__’:

 run((‘’, 25000))

Alas, it’s not quite as compact as the bottle version, but it per-
forms the same function.

One downside of this implementation is that the implementation
of fib() is especially bad for large integers. Try giving a number
such as 45 as input and watch how the whole server locks up
(you can’t make requests from other clients). This is the nature
of async—long-running calculations will block the entire event
loop. However, you can move the work out to a thread pool by
using the loop.run_in_executor() function as follows:

from concurrent.futures import ThreadPoolExecutor

_pool = ThreadPoolExecutor()

async def fib_handler(request):

 n = int(request.match_info[‘n’])

 if n < 15:

 result = fib(n)

 else:

 loop = asyncio.get_event_loop()

 result = await loop.run_in_executor(_pool, fib, n)

 resp = { ‘result’: result }

 return web.Response(text=json.dumps(resp),

 content_type=’application/json’)

If you try this modified version with a large integer, you’ll find
that the computation no longer blocks everything—you’ll be able
to make other requests while the calculation is churning away.
Excellent. A similar technique would need to be used for any
code that might potentially block the event loop.

Thoughts
In this article, I’ve presented a few examples of using asyncio
with variations of the modern async syntax. At first glance, the
code is probably a bit jarring—it looks unlike any Python code
you might have written before. Yet, at the same time, the code
retains the clarity of synchronous code written to use threads or
processes. That is certainly a big plus.

A major concern with asyncio is that it tends to be an “all in”
prospect for software development. If you’re going to use it, you
need to make sure that all of your libraries and code support it.
Particular attention needs to be given to blocking operations
involving files, network connections, subprocesses, and other
I/O related tasks. A big part of the new “async” and “await”
syntax is making the distinction between synchronous and
asynchronous code absolutely clear. As a general rule, any exist-
ing Python code will probably run in an asynchronous environ-
ment, but unless “await” is being used, there’s no guarantee that
it won’t block the event loop by accident. Whenever possible,
you’ll want to use libraries that have been written with asyncio
in mind.

On that subject, just what libraries are available? At this time,
there seems to be a growing set of modules for interacting with
a variety of network services. As noted, aiohttp provides async
support for HTTP, both as a client and a server. The library
provides additional support for WebSockets and other modern
HTTP features. A search for “asyncio” on the Python Package
Index reveals a wide variety of libraries for interacting with
services such as Redis, ZeroMQ, MondoDB, XML-RPC, IRC,
Postgres, and others. Naturally, many of these are new and
experimental. However, it seems that Python’s asynchronous
future is poised to be rather interesting.

Finally, a few words of caution. In writing this article, I debated
how much information to provide on how asyncio actually works
under the covers. If anything, you really don’t want to know how
it works—if you go wandering into the source code, your mind
will completely shatter into a million pieces. Let’s just say that
it involves a lot of very clever programming with generators. I
wrote about some of the general concepts in a previous ;login:
article although asyncio takes it to a whole new level of com-
plexity [7]. Also, if you’re going to use asyncio you must heed
every word of advice you can find in the documentation. If you
decide to play it fast and loose, you’re likely going to spend hours
debugging and cursing. For example, I wasted the better part of a
half-day trying to figure out why I couldn’t get my simple socket
example to work. As it turns out I forgot to put the socket in non-
blocking mode—a detail found in the documentation, but which
I overlooked at the time. The bottom line: you need to read the
documentation carefully.

54  D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
Awaiting for Godot

More Information
The documentation for asyncio should be your first starting
point. PEP 3156 is a must read for background information and
rationale for asyncio [8]. PEP 492 contains information on the
new async and await syntax [9]. There have been numerous talks
given about asyncio over the last year. There are too many to list
individually, but a search of pyvideo will not disappoint [10].

References
[1] asyncio module: https://docs.python.org/3/library/asyncio
.html.

[2] socket module: https://docs.python.org/3/library/socket
.html.

[3] socketserver module: https://docs.python.org/3/library
/socketserver.html.

[4] requests module: http://www.python-requests.org/en
/latest/.

[5] aiohttp module: http://aiohttp.readthedocs.org.

[6] bottle module: http://bottlepy.org.

[7] David Beazley, “A Tale of Two Concurrencies (Part 2),”
;login:, vol. 40, no. 4, August 2015: https://www.usenix.org
/publications/login/aug15/beazley.

[8] PEP 3156: https://www.python.org/dev/peps/pep-3156/.

[9] PEP 492: https://www.python.org/dev/peps/pep-0492/.

[10] pyvideo: http://pyvideo.org.

NSDI focuses on the design principles, implementation, and practical evaluation of networked and distrib-

uted systems. The symposium provides a high quality, single-track forum for presenting results and discuss-

ing ideas that further the knowledge and understanding of the networked systems community as a whole,

continue a significant research dialog, or push the architectural boundaries of network services.

NSDI ’16 will be co-located with the 2016 Open Networking Summit.

www.usenix.org/nsdi16

SAVE THE DATE!

March 16–18, 2016 • Santa Clara, CA

13th USENIX Symposium on Networked Systems
Design and Implementation

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socketserver.html
http://www.python-requests.org/en/latest/
http://aiohttp.readthedocs.org
http://bottlepy.org
https://www.usenix.org/publications/login/aug15/beazley
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-0492/
http://pyvideo.org
http://www.usenix.org/nsdi16
http://www.usenix.org

