
www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  55

COLUMNS

Practical Perl Tools
OAuth2 in Situ

D A V I D N . B L A N K - E D E L M A N

In the last column I threw a little hissy fit around the authentication
options for working with the WordPress REST API. In it, I made noises
about the adoption of OAuth 2.0 over version 1.0a and further grumbled

about the backwards incompatibility (not to mention some of the politics
around the changes) between the two versions. All of this piqued the inter-
est of my editor who asked me to write some more on the topic. I’m still not
thrilled about the OAuth situation, but I thought I would try to redeem myself
by providing a column around the subject based on an actual piece of code
that had to authenticate using OAuth2. This still won’t address the OAuth
1.0a questions, but perhaps future columns will drag me kicking and scream-
ing in that direction as well. One brief aside about version 1.0a because I need
to make a slight correction: in the previous column I had suggested that 2.0
had all but supplanted 1.0a in the world. I’ve recently been discovering a few
pockets of 1.0a (for example, Twitter’s API, probably for historical reasons,
seems to consist of this strange mishmash of the two), so I don’t think 1.0a
can be considered dead quite yet. Maybe we’ll make with the Twitter in a
future column.

Background
For those of you who haven’t had the pleasure of diving into either of the OAuth versions, let’s
take a quick moment to describe the beast and what purpose it serves. In many of the cases
where you will initially encounter it, it will be used as an authentication protocol (albeit one
that appears to be more complex than it needs to be). But OAuth was designed to be much
more than that. Here’s the very best description [1] of the intent I have ever seen, from a blog
post by Eran Hammer, one of the former lead authors of the spec, which is also quoted on
oauth.net, the canonical home for OAuth material:

Many luxury cars today come with a valet key. It is a special key you give the
parking attendant and unlike your regular key, will not allow the car to drive more
than a mile or two. Some valet keys will not open the trunk, while others will block
access to your onboard cell phone address book. Regardless of what restrictions the
valet key imposes, the idea is very clever. You give someone limited access to your
car with a special key, while using your regular key to unlock everything.

Every day new websites launch offering services which tie together functionality
from other sites. A photo lab printing your online photos, a social network
using your address book to look for friends, and APIs to build your own desktop
application version of a popular site. These are all great services—what is not so
great about some of the implementations is their request for your username and
password to the other site. When you agree to share your secret credentials, not
only do you expose your password to someone else (yes, that same password you

David Blank-Edelman is
the Technical Evangelist at
Apcera (the comments/
views here are David’s alone
and do not represent Apcera/

Ericsson). He has spent close to 30 years
in the system administration/DevOps/SRE
field in large multiplatform environments,
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard “g.”
dnblankedelman@gmail.com

mailto:dnblankedelman@gmail.com
http://www.usenix.org

56    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

COLUMNS
Practical Perl Tools: OAuth2 in Situ

also use for online banking), you also give them full
access to do as they wish. They can do anything they
wanted—even change your password and lock you out.

This is the problem OAuth solves. It allows you, the
User, to grant access to your private resources on one
site (which is called the Service Provider), to another
site (called Consumer, not to be confused with you, the
User). While OpenID is all about using a single identity
to sign into many sites, OAuth is about giving access
to your stuff without sharing your identity at all (or its
secret parts).

As an aside, in the process that led to 2.0, Hammer subsequently
left the OAuth working group and withdrew his name from the
specification because he thought 2.0 was deeply flawed. See his
subsequent post, “OAuth 2.0 and the Road to Hell,” [2] for more
details. He’s also got an entertaining, albeit NSFW, talk on the
flaws of OAuth and the OAuth spec process [3]. I told you that
OAuth was politically messy…

So a key thing to note about the OAuth intention statement above
(that is brought out nicely in the first chapter of the upcoming
book OAuth2 in Action by Justin Richer and Antonio Sanso)
is that OAuth is less of an authentication protocol and more of
a delegation protocol. The idea is that it can provide you a way
to say, “Let this program/service/etc. have the access to do the
following things on my behalf.” If you’ve ever signed into a new
mail or Twitter client and found yourself logging first into Gmail
or Twitter to be faced with a screen of permissions to grant, you’ve
likely been part of an OAuth transaction (of some version or other).

The Goal
Now that you know what sort of protocol we are dealing with,
let’s look at the actual goal of the script we’re going to write
together. Let’s just say, hypothetically, that you work with an
organization that uses Google Calendar to maintain its “in-out”
listing (i.e., who is going to be out of the office, who is working
from home, who is on vacation, etc.). Each person who is not
going to be in the office marks this by making an event in this
shared calendar. It can be a bit cluttered, but on the whole it
works fine. There’s just one niggling problem: sometimes people
add calendar entries for their absences but forget to turn off noti-
fications for those entries. This means that every day, everyone
in the organization who subscribes to this calendar receives
notifications (whether they like it or not) for those entries. We’re
going to write some code that connects to the Google calendar
service, reads that calendar, and displays the events which have
notifications still set. Then presumably we can go visit either the
entries or the individuals in question and take corrective action.

Where does OAuth2 come in? Google forces you to use/interact
with their (respected, even by Hammer) OAuth2.0 implementa-
tion to gain access to private calendars. Let’s dive in.

How Does It Work?
Before we get into looking at actual code, we probably should
take at least a few steps up the OAuth2 learning curve (a fairly
steep slope, I might add). Even if some magic Perl module will
take care of all of the details behind the scenes, it is really
important to get at least a general sense of what is going on. To do
that, I’m going to elide a whole bunch o’ details because OAuth2
has a number of different “flows” whereby different steps get
taken depending on just what context it is being used in (e.g., a
Web application, some application running on your computer,
an application running in the browser, etc.) and just what kind
of access the person interacting with the system has to a real
Web browser for one of the steps (e.g., is it being used from a
machine with a browser? in some device with no keyboard? etc.).
In this column, we’re only going to show one flow/scenario that
works for the task at hand. If you plan to get deeper into this
stuff, I highly recommend you read and reread and reread the
documentation of the vendor that you will be talking OAuth2 to/
with. Some (e.g., Google [4]) have quite decent documentation, so
perhaps you will get lucky.

Okay, let’s toss a stone and skim the surface. The basic OAuth2
protocol flow looks like the diagram from RFC6749 in Figure 1.

The dance goes roughly like this: you (the client) send an “I’d
like my app to have the following access for this service” request
to the resource holder of your choice (Google, in our case). That
resource holder does something to verify you and to obtain your
consent to delegate this access to your app. It hands back an
authorization token that says, “Yes, I’ve confirmed that this per-
son is fine and allowed to access X.” Your app can then send this
token to an authorization server, which hands you back another
token (an access token) that will act as a key to unlock access to
the protected resource in question when presented at the same
time as a request for that resource.

In the case of the code we are going to write, the script will send
a request to Google’s auth service requesting read-only access
to an account’s private calendars. Google will reply with a URL,

Figure 1: OAuth2 protocol flow, from https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749
http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  57

COLUMNS
Practical Perl Tools: OAuth2 in Situ

which we’ll go to “by hand.” That URL will take us through the
standard Google login procedure (if not logged in) and then pop
up a screen that will say, “{App Name} would like to view your
calendars [Deny] [Allow].” If you click the Allow button, a subse-
quent screen will be presented that says, “Please copy this code,
switch to your application and paste it there: {longish_string
_of_random_characters}.” That string is the authorization token.
We’ll type it into a prompt presented by the script, the script will
exchange it for an access token (which it will hold on to for us),
and finally it will begin to send requests to the Google Calendar
API with that token added to the headers of all of the requests.
We’ll then parse the returned data looking for specific calendar
entries.

That’s how we’re going to dance. But I would be a little remiss
if I didn’t mention one complication that we won’t touch out of
either brevity or laziness (you decide). To improve the security
of the situation, access tokens all have relatively short expira-
tion times after which they can no longer be used. The authori-
zation token we originally received is only good for one access
token exchange, so what do we do after the access token expires?
OAuth2 brings yet another token into the picture (yes, that’s
three so far, but who’s counting?) called a refresh token. Figure 2
depicts the dance taken to refresh a token.

This crazy little ASCII diagram shows that we can also request
a refresh token as part of the dance. The refresh token is sup-
posed to be squirreled away someplace safe, only be brought out
and sent over the wire when it is time to get a new access token
issued as expiration approaches/arrives. Our script isn’t going to
run long enough to hit expiration timeouts, so we’re not going to
bother with this token, nor are we going to pay attention to stor-
ing tokens, something you would do for more complex/longer-
lived applications.

Code Time
With that background in mind, let’s look at two code samples.
To get warmed up, let’s look at how you would get a list of the
calendars I have configured in Google calendar (the list of calen-
dars I own and have subscribed to on the left side of the Google
Calendar Web app).

Now, it would be entirely possible to write all of the OAuth2
code using bare-bones Perl modules used for making HTTP/S
requests like LWP::UserAgent or HTTP::Tiny. We’ve seen a
number of these in the past. But in this case, I’m perfectly happy
to let someone else work out some of the fiddly bits because we
are bound to hit plenty of fiddly when we actually get to use the
Calendar API.

To make my life a bit easier, I am using LWP::Authen::OAuth2.
Think of it as LWP::UserAgent with some magic OAuth2 pixie
dust mixed in (plus it has some Google-centric code baked in). At
the very least, I’d encourage you to look at its Overview doc, which
does a good job of writing up some of the background/issues you
are sure to want to know about before diving into this stuff.

So we start like this:

use LWP::Authen::OAuth2;

use Browser::Open qw(open_browser);

use IO::Prompt::Tiny qw/prompt/;

use JSON;

my $cal_uri = ‘https://www.googleapis.com/calendar/v3’;

my $oauth2 = LWP::Authen::OAuth2->new(

 client_id =>

‘getyourowncode.apps.googleusercontent.com’,

 client_secret 	 => ‘need your own secret’,

 service_provider 	=> “Google”,

 scope 	 => ‘https://www.googleapis.com/auth/

 calendar.readonly’,

 redirect_uri => “urn:ietf:wg:oauth:2.0:oob”,

 # Optional hook, but recommended.

 #save_tokens => \&save_tokens,

 #save_tokens_args => [$dbh],

 # This is for when you have tokens from last time.

 #token_string => $token_string.

);

After setting a variable for later use that shows the base URL for
the Google Calendar API, we create a new oauth2 object. It
requires a client_id and client_secret from Google. To get one of
these, you will want to go to https://console.developers.google.com,
create a new project, enable just the Google Calendar API for it,
then under “Credentials” request a new OAuth2 client_id. When

Figure 2: Refreshing an expired access token, from https://tools.ietf.org
/html/rfc6749

https://tools.ietf.org
https://console.developers.google.com
http://www.usenix.org

58    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

COLUMNS
Practical Perl Tools: OAuth2 in Situ

it asked for an application type, I selected “Other,” and that’s
worked swimmingly for me for this script.

There are two other key parameters here. The first is “scope,”
which is the level of access we are requesting to the resource.
With Google Calendar, the choices are few (read-only or read-
write access). The other parameter is the redirect_uri. This is
the URI that will be handling the authorization token once it
is issued. That little weird-looking line just says, “Display the
token in the browser and ask the user to do something with it”
(vs. going to a real URI). I left the token-related parameters from
the documentation commented out just as a reminder that better
token handling would normally be inserted at this point.

oauth2 object in hand, we then do this:

my $url = $oauth2->authorization_url();

open_browser($url);

my $auth_code = 	prompt(“Please enter auth code

 	 provided by Google:”);

$oauth2->request_tokens(code => $auth_code);

The module figures out the right magic URL necessary for
giving consent and obtaining the authorization token for us.
Because I’m lazy, I pulled in a module that attempts to open a
browser for you (works great on OS X, but your mileage may
vary) with that URL. As I mentioned before, the end result is we
are sitting at a Web page that says, “Please copy this code, switch
to your application and paste it there: …”. The next lines have our
script prompting for that code and exchanging it for an access
token.

Now let’s do the actual work with the Google Calendar API. The
documentation at [5] is decent, but Google provides something
even better, an awesome Web-based API explorer that shows all
of the possible required and optional parameters and helps you
try out various combinations before you actually code. This API
explorer is linked off their Get Started page [6].

To actually get a list of calendars, we would do something like
this:

my $response =

$oauth2->get(“$cal_uri/users/me/calendarList”);

die ‘Could not retrieve cal list’ unless

 $response->is_success;

my $callist = decode_json $response->decoded_content;

foreach $cal (@{ $callist->{items} }) {

 print $cal->{summary} . “:\n” . $cal->{id} . “\n”;

}

We make the proper GET request, and if it succeeds, we are
handed back some JSON. We parse that JSON into Perl data
structures and print a selected set of fields back from that info.

If that all makes sense, let’s take a look at the code for perform-
ing our real task. Our goal is to find all of the events that have
some sort of notification set on them. Google’s calendar lets you
set a default for the entire calendar for notifications; let’s make
the assumption that the default for the calendar is sane (other-
wise, we’d get alerted for a very large quantity of events because
people don’t often change the default when they create an event).
So now we have to locate the individual events that have a non-
default notification set for them.

First, we’ll need to make sure we are looking at the right cal-
endar. To read the events from a calendar, you have to request
them from the calendar by referencing that calendar’s unique ID.
That’s the reason why the previous sample prints out both a cal-
endar’s summary (i.e., name) and its ID. The ID gets passed along
in the request URL (along with some other parameters, more on
that in a moment), so we’ll need to make sure it is URL-safe.

Here’s what it looks like to set an ID and make the original
request for data (note, all of the OAuth2-related code is exactly
the same as in the previous sample, so I’m only going to show the
Calendar API-related code here):

my $calid = uri_escape ‘somecalendarid@gmail.com’;

$response =

$oauth2->get(“$cal_uri/calendars/$calid/events?

 maxResults=100”);

die ‘Could not retrieve list of entries’

 unless $response->is_success;

You can see that the URL has changed and that we’ve added on a
parameter to the URL itself. If you find you are using a number
of parameters in the query, I recommend constructing the URL
using the query_form() function from the URI module instead of
doing it by hand as above.

So now we can print the results. Here we look for a special field
in an event entry that indicates it is using a custom notifica-
tion. If that exists, we print out the name of the event plus either
the exact day and time it starts or just the day (if it is an all-day
event).

foreach my $entry (@{ $entries->{items} }) {

 print “$entry->{summary} “

 . ($entry->{start}->{dateTime} ||

 $entry->{start}->{date}) . “\n”

 if exists $entry->{reminders}->{overrides};

}

http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  59

COLUMNS
Practical Perl Tools: OAuth2 in Situ

Resources
[1] Eran Hammer explains OAuth: http://hueniverse.com
/2007/09/05/explaining-oauth/.

[2] Eran Hammer disclaiming OAuth2: http://hueniverse
.com/2012/07/26/oauth-2-0-and-the-road-to-hell/.

[3] Eran Hammer, NSFW, politics of OAuth2 process:
https://vimeo.com/52882780.

[4] Google docs on using OAuth2: https://developers.google
.com/identity/protocols/OAuth2.

[5] Google docs for using the Calendar API: https://developers
.google.com/google-apps/calendar/.

[6] Calendar API explorer: https://developers.google.com
/google-apps/calendar/get_started.

So, we’re done, right? Sorry, not so fast. If you have lots of entries
in your calendar, you will have to deal with pagination. As we
saw in the last column, the results come back N results at a
time. By default, that number is 250, although you can raise it to
2500 according to the doc. I prefer to walk through the data in
reasonable-sized pieces (100 at a time, that’s what the maxRe-
sults parameter is doing there). With each result set (except for
the last), Google hands back a nextPageToken that you can send
in a subsequent request’s pageToken parameter (note the differ-
ent name!). Here’s code that repeats the previous step for every
subsequent page of data if there is any:

while ($entries->{nextPageToken}) {

 $response =

 $oauth2->get(“$cal_uri/calendars/$calid/events?”

 . “maxResults=100&”

 . “pageToken=”

 . $entries->{nextPageToken});

 die ‘Could not retrieve addtl list of entries’

 unless $response->is_success;

 $entries = decode_json $response->decoded_content;

 foreach my $entry (@{ $entries->{items} }) {

 print “$entry->{summary} “

 . ($entry->{start}->{dateTime} ||

 $entry->{start}->{date}) . “\n”

 if exists $entry->{reminders}->{overrides};

 }

}

The key thing is that you send the exact same query again that
yielded the paged result, the only difference being the addition of
the pageToken parameter.

Now we are done. I hope this has given you a brief peek into how
OAuth2 can be used to gain access to a real-live service. Take
care, and I’ll see you next time.

http://hueniverse.com/2007/09/05/explaining-oauth/
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://vimeo.com/52882780
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/get_started
http://www.usenix.org

