
20    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SYSTEMS

NOVA
A Log-Structured File System for Hybrid Volatile/Non-Volatile
Main Memories

J I A N X U A N D S T E V E N S W A N S O N

NOVA is a new kind of log-structured file system designed for emerg­
ing non-volatile main memory (NVMM) technologies, like Intel’s
3D XPoint memory. NOVA provides better performance and stron­

ger consistency guarantees than either conventional block-based file systems
or other, recently proposed NVMM file systems. NOVA’s focus on NVMMs
leads to three key design decisions: NOVA maintains a separate metadata log
for each file and directory, uses copy-on-write to provide write atomicity, and
applies lightweight journaling to make complex operations atomic. These
techniques allow NOVA to improve performance by a factor of between 3.1
and 13.5 without jeopardizing crash consistency.

Emerging non-volatile memory (NVM) technologies such as spin-torque transfer, phase
change, resistive memories [2, 8], and Intel and Micron’s 3D Xpoint [1] technology promise to
revolutionize I/O performance. Researchers have proposed placing NVMs on the processor’s
memory bus alongside conventional DRAM, leading to hybrid volatile/non-volatile main
memory systems [12]. Combining faster, volatile DRAM with slightly slower, denser non-
volatile main memories (NVMMs) offers the possibility of storage systems that combine the
best characteristics of both technologies.

Hybrid DRAM/NVMM storage systems present a host of opportunities and challenges for
system designers. These systems should improve conventional file access performance and
allow applications to abandon slow read/write file interfaces in favor of faster memory-
mapped, load/store access interfaces. They will also allow for increased concurrency and
efficiently support more flexible access patterns. File systems must realize these advan­
tages while still providing the strong consistency guarantees that applications require and
respecting the limitations of emerging memories (e.g., limited program cycles).

Disk-based file systems are not suitable for hybrid memory systems because NVMM has
different characteristics from disks in both performance and consistency guarantees. As a
result, naively running disk-based file systems on NVMM cannot fully exploit NVMM’s high
performance, and performance optimizations compromise consistency on system failure.

Existing NVMM file systems such as BPFS [3], PMFS [4], and ext4-DAX [10] also fail to
provide the combination of performance and consistency NVMM should deliver. They use
shadow paging and journaling to provide metadata atomicity, but these mechanisms incur
high overheads that limit performance. PMFS and ext4-DAX avoid some of these costs by
sacrificing data atomicity.

To provide consistency and high performance in an NVMM file system, we have created the
NOn-Volatile memory Accelerated (NOVA) file system. NOVA rethinks conventional log-
structured file system techniques to exploit the fast random access that hybrid memory sys­
tems provide. The result is that NOVA supports massive concurrency, keeps log sizes small,
and minimizes garbage collection costs while providing strong consistency guarantees and
very high performance.

Jian Xu is a PhD candidate in
the Department of Computer
Science and Engineering at
the University of California,
San Diego. His research

interests include operating system and system
software design for next-generation storage
technologies. He is working together with
Professor Steven Swanson in the Non-Volatile
Systems Laboratory. jix024@cs.ucsd.edu

Steven Swanson is a Full
Professor in the Department
of Computer Science and
Engineering at the University
of California, San Diego and

the Director of the Non-Volatile Systems
Laboratory. His research interests include
systems, architecture, security, and reliability
issues surrounding non-volatile, solid-state
memories. He has also co-led projects to
develop low-power co-processors for irregular
applications and to devise software techniques
for using multiple processors to speed up
single-threaded computations. In previous
lives he has worked on scalable dataflow
architectures, ubiquitous computing, and
simultaneous multithreading. He received his
PhD from the University of Washington in
2006. swanson@cs.ucsd.edu

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  21

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

Several aspects of NOVA set it apart from previous log-struc­
tured file systems. NOVA assigns each inode a separate log to
maximize concurrency. NOVA stores the logs as linked lists, so
they do not need to be contiguous in memory, and it uses atomic
updates to a log’s tail pointer to provide atomic log append. For
operations that span multiple inodes, NOVA uses lightweight
journaling.

NOVA uses copy-on-write for file data instead of storing it in the
log. The resulting logs are compact, so the recovery process only
needs to scan a small fraction of the NVMM. This also signifi­
cantly reduces garbage collection overhead, allowing NOVA to
sustain good performance even when the file system is nearly
full. Finally, NOVA provides an atomic mmap interface that sim­
plifies the tasks of writing programs that directly access NVMM
via load and store instructions.

Our experiments show that NOVA is significantly faster than
existing file systems in a wide range of applications and out­
performs file systems that provide the same data consistency
guarantees by 3.1x–13.5x. And when measuring garbage collec­
tion and recovery overheads, we find that NOVA provides stable
performance under high NVMM utilization levels and fast
recovery in case of system failure.

More details and results are available in our FAST ’16 paper [11].
NOVA is open source and available at https://github.com/NVSL
/NOVA.

NOVA Design Overview
NOVA is a log-structured POSIX file system. However, since it
targets a different storage technology, NOVA looks very different
from conventional log-structured file systems [9] that are built
to maximize disk bandwidth.

We designed NOVA based on three observations. First, since
NVMMs support fast, highly concurrent random accesses, using
multiple logs does not negatively impact performance. Second,
logs do not need to be contiguous, because random access is
cheap. Third, data structures that support fast search (e.g., tree
structures) are more difficult to implement correctly and effi­
ciently in NVMM than in DRAM. Based on these observations,
we made the following design decisions in NOVA.

Give each inode its own log: Unlike conventional log-struc­
tured file systems, each inode in NOVA has its own log, allowing
concurrent updates across files without synchronization. It also
means recovery is very fast, since NOVA can replay many logs
simultaneously.

Keep logs in NVMM and indexes in DRAM: NOVA keeps log
and file data in NVMM and builds highly optimized radix trees
in DRAM to quickly locate file data. This means that searching

the in-NVMM data structures is not usually necessary, so they
can remain simple, easy to verify, and compact.

Implement the log as a singly linked list: The locality benefits
of sequential logs are less important in NVMM-based storage,
so NOVA uses a linked list of 4 KB NVMM pages to hold the log
and stores the next page pointer in the end of each log page. As a
result, NOVA can perform log cleaning at fine-grained, page-size
granularity, and reclaiming log pages that contain only stale
entries requires just a few pointer assignments.

Use logging to provide atomicity for simple, common-case
operations: NOVA is log-structured because this provides
cheaper atomicity for simple updates than journaling or shadow
paging. To atomically write data to a log, NOVA first appends
data to the log and then atomically updates the log tail to commit
the updates, thus avoiding both the duplicate writes of journal­
ing and the cascading updates of shadow paging.

Use lightweight journaling for more complex operations:
Some directory operations, such as a move between directories,
span multiple inodes. For these, NOVA uses journaling to atomi­
cally update multiple logs: NOVA first writes data at the end of
each inode’s log, and then journals the log tail updates to update
them atomically. NOVA journaling is lightweight since it only
involves log tails (as opposed to file data or metadata). The jour­
nals are very small—less than 64 bytes—since the most complex
POSIX operation (rename()) involves up to four inodes, and each
journal entry consists of eight bytes for the address of the log tail
pointer and eight bytes for the updated value.

Use shadow paging for file data: NOVA uses copy-on-write for
modified file data and appends metadata for the write to the log.
The metadata describe the update and point to the data pages.

Using copy-on-write for file data results in shorter logs, acceler­
ating the recovery process. It also makes garbage collection sim­
pler and more efficient, since NOVA never has to copy file data
out of the log to reclaim a log page. Finally, since it can reclaim
stale data pages immediately, NOVA can sustain performance
even under heavy write loads and high NVMM utilization levels.

Implementing NOVA
NOVA’s core data structures focus on making file and directory
operations fast and efficient. They also provide support for an
mmap interface that makes using raw NVMM easier for pro­
grammers, while providing for efficient garbage collection and
fast recovery in the case of a system failure.

NVMM Data Structures and Space Management
Figure 1 shows the high-level layout of NOVA data structures in
a region of NVMM that it manages. NOVA divides the NVMM
into four parts: the superblock and recovery inode, the inode

22    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

tables, the journals, and log/data pages. The superblock contains
global file system information, the recovery inode stores recov­
ery information that accelerates NOVA remount after a clean
shutdown, the inode tables contain inodes, the journals provide
atomicity to directory operations, and the remaining area con­
tains NVMM log and data pages.

To ensure high scalability, NOVA maintains an inode table,
journal, and NVMM free page list at each CPU to avoid global
locking and scalability bottlenecks: partitioning the inode table
across CPUs avoids inode allocation contention and allows for
parallel scanning in failure recovery. Per-CPU journals allow for
concurrent transactions, and per-CPU NVMM free list provides
concurrent NVMM allocation and deallocation. NOVA puts the
free lists in DRAM to reduce consistency overheads.

Figure 2 shows the structure of a NOVA file. A NOVA inode
contains pointers to the head and tail of its log. The log is a
linked list of 4 KB pages, and the tail always points to the latest
committed log entry. A file inode’s log contains two kinds of log
entries: inode update entries for metadata modifications and file
write entries for writes. Each open file has a radix tree in DRAM
to locate data in the file by the file offset. NOVA scans the log
from head to tail to rebuild the DRAM data structures when the
system accesses the inode for the first time.

NOVA provides fast atomicity for metadata, data, and mmap
updates using a technique that combines log structuring and
journaling. This technique uses three mechanisms:

64-bit atomic updates: NOVA uses 64-bit in-place writes to
directly modify metadata for some operations (e.g., the file’s
atime for reads) and uses them to commit updates to the log by
updating the inode’s log tail pointer.

Logging: NOVA uses the inode’s log to record operations that
modify a single inode. These include operations such as write,
msync, and chmod. The logs are independent of one another.

Lightweight journaling: For directory operations that require
changes to multiple inodes (e.g., create, unlink, and rename),
NOVA uses lightweight journaling to provide atomicity.

File Operations
NOVA uses copy-on-write for file data. On each write, NOVA
writes the new version of the modified pages to newly allocated
NVMM. Then it appends a write entry to the inode’s log that
describes the write and points to those pages.

Figure 2 illustrates a write operation. The notation <file page
offset, number of pages> denotes the page offset and number of
pages a write affects. The first two entries in the log describe
two writes, <0, 1> and <1, 2>, of 4 KB and 8 KB (i.e., one and two
pages), respectively. A third, 8 KB write, <2, 2>, is in flight.

To perform the <2, 2> write, NOVA fills data pages and then
appends the <2, 2> entry to the file’s inode log. Then NOVA
atomically updates the log tail to commit the write, and updates
the radix tree in DRAM, so that offset “2’’ points to the new
entry. The NVMM page that holds the old contents of page 2
returns to the free list immediately. During the operation, a per-
inode lock protects the log and the radix tree from concurrent
updates. When the write system call returns, all the updates are
persistent in NVMM.

Figure 2: NOVA file structure. An 8 KB (i.e., two-page) write to page 2
(<2, 2>) of a file requires five steps. NOVA first writes a copy of the data
to new pages (step 1) and appends the file write entry (step 2). Then it
updates the log tail (step 3) and the radix tree (step 4). Finally, NOVA
returns the old version of the data to the allocator (step 5).

Figure 1: NOVA data structure layout. NOVA has per-CPU free lists,
journals, and inode tables to ensure good scalability. Each inode has a
separate log consisting of a singly linked list of 4 KB log pages; the tail
pointer in the inode points to the latest committed entry in the log.

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  23

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

If NOVA cannot find a contiguous region of NVMM big enough
for the write, it will require multiple log entries. In this case
NOVA breaks the write into multiple write entries and appends
them all to the log to satisfy the request. To maintain atomicity,
NOVA commits all the entries with a single update to the log tail
pointer.

Directory Operations
Each directory inode’s log holds two kinds of entries: directory
entries (dentry) and inode update entries. Dentries include the
name of the child file/directory, its inode number, and time­
stamp. NOVA uses the timestamp to atomically update the direc­
tory inode’s mtime and ctime with the operation. NOVA appends
a dentry to the log when it creates, deletes, or renames a file or
subdirectory under that directory.

NOVA adds inode update entries to the directory’s log to record
updates to the directory’s inode (e.g., for chmod and chown).
These operations modify multiple fields of the inode, and the
inode update entry provides atomicity.

Figure 3 illustrates the creation of file zoo in a directory that
already contains file bar. The directory has recently undergone
a chmod operation and used to contain another file, foo. The log
entries for those operations are visible in the figure. NOVA first
selects and initializes an unused inode in the inode table for zoo
and appends a create dentry of zoo to the directory’s log. Then
NOVA uses the current CPU’s journal to atomically update the
directory’s log tail and set the valid bit of the new inode. Finally,
NOVA adds the file to the directory’s radix tree in DRAM.

Atomic-mmap
NOVA includes a novel direct NVMM access model with
stronger consistency called atomic-mmap. When an application
uses atomic-mmap to map a file into its address space, NOVA
allocates replica pages from NVMM, copies the file data to the

replica pages, and then maps the replicas into the address space.
When the application calls msync on the replica pages, NOVA
handles it as a write request described in the previous section,
uses movntq operation to copy the data from replica pages to data
pages directly, and commits the changes atomically. Compar­
ing to PMFS and ext4-DAX that map the NVMM file data pages
directly into the application’s address space, atomic-mmap has
higher overhead but provides stronger consistency guarantee.

Garbage Collection
NOVA uses two complementary techniques to reclaim dead log
entries: fast GC and thorough GC. Both use the same criteria to
determine whether a log entry is dead: namely, if it is not the last
entry in the log and any of the following conditions are met:

◆◆ A file write entry is dead if it does not refer to valid data pages.

◆◆ An inode update that modifies metadata (e.g., mode or mtime) is
dead if a later inode update modifies the same piece of metadata.

◆◆ A create dentry is dead if a corresponding delete dentry is ap­
pended to the log. Both dentries become invalid in this case.

Fast GC applies these rules to reclaim log pages that do not
contain any live entries by deleting the page from the log’s linked
list. Figure 4a illustrates this: originally, the log has four pages
and all the entries in page 2 are dead. NOVA atomically updates
the next page pointer of page 1 to point to page 3, freeing page 2.

Thorough GC compacts log pages by copying live data from
several pages into a new page. Figure 4b illustrates thorough
GC after fast GC is complete. NOVA allocates a new log page 5
and copies valid log entries in pages 1 and 3 into it. Then NOVA
links page 5 to page 4 to create a new log and replace the old one.
NOVA does not copy the live entries in page 4 to avoid updating
the log tail, so that NOVA can atomically replace the old log by
updating the log head pointer.

Figure 3: NOVA directory structure. Dentry is shown in <name, inode_
number> format. To create a file, NOVA first appends the dentry to the
directory’s log (step 1), updates the log tail as part of a transaction (step
2), and updates the radix tree (step 3).

Figure 4: NOVA log cleaning. The linked list structure of log provides
simple and efficient garbage collection. Fast GC reclaims invalid log pages
by deleting them from the linked list (a), while thorough GC copies live log
entries to a new version of the log (b).

24    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

Mounting, Unmounting, and Recovery
NOVA’s design allows for fast mounting and unmounting as well
as efficient recovery after a system failure. When NOVA mounts
a file system, it must construct two kinds of data structure in
DRAM: the per-inode radix trees and the NVMM allocator.

After either a clean unmount or system failure, NOVA rebuilds
the radix trees on demand when any application opens a file or
directory.

Reconstructing the NVMM allocator state, however, cannot
wait. During a normal unmount, NOVA writes the NVMM page
allocator state in the recovery inode’s log. Then it can quickly
rebuild the allocator on remount.

After a system failure, NOVA rebuilds the NVMM allocator by
scanning all the inode logs. Fortunately, NOVA can use multiple
threads to perform the scan in parallel, and the logs are small
since they only contain metadata.

Evaluation
NOVA aims to provide strong consistency, high performance, and
fast recovery, and our results show that it achieves these goals.

We have implemented NOVA in the Linux kernel version 4.0
using the existing NVMM hooks that the kernel provides. It cur­
rently passes the Linux POSIX file system test suite [7].

We measure NOVA’s performance using Intel’s Persistent
Memory Emulation Platform (PMEP) [4], a dual-socket Xeon
platform with special CPU microcode and firmware that allows
it to emulate some aspects of NVMM performance with DRAM.
PMEP supports configurable latencies and bandwidth for the
emulated NVMM, allowing us to explore NOVA’s performance
on a variety of future memory technologies. PMEP emulates
clflushopt (efficient cache line flush), clwb (cache line write
back), and PCOMMIT (persistent commit) instructions with pro­
cessor microcode.

In our tests we configure the PMEP with 32 GB of DRAM and
64 GB of NVMM. We choose two configurations for PMEP to
emulate different NVMM technologies: for STT-RAM we use
the same read latency and bandwidth as DRAM, and configure
PCOMMIT to take 200 ns (to match projections for STT-RAM
write times); for PCM we use 300 ns for the read latency and

reduce the write bandwidth to 1/8 of DRAM while increasing
PCOMMIT time to 500 ns. clwb takes 40 ns in both configurations.

We compare NOVA to seven other file systems: Two NVMM file
systems, PMFS and ext4-DAX, are journaling file systems. Two
others, NILFS2 and F2FS, are log-structured file systems. We
also compare to ext4 in default mode (ext4) and in data journal
mode (ext4-data), which provides data atomicity. Finally, we
compare to btrfs, a copy-on-write Linux file system. PMFS,
ext4-DAX, and NOVA are Direct Access (DAX) file systems that
bypass the operating system page cache and access NVMM
directly. Btrfs and ext4-data are the only two file systems in the
group that provide the same strong consistency guarantees as
NOVA. Ext4-DAX does not currently provide a data journaling
option. We add clwb and PCOMMIT instructions to flush data where
necessary in each file system, and use Intel persistent memory
driver [6] to emulate an NVMM-based RAMDisk-like device.

Macrobenchmarks
We select four Filebench [5] workloads to evaluate the application-
level performance of NOVA (Table 1). For each workload we test
two data set sizes by changing the number of files. The small
data set will fit entirely in DRAM, allowing file systems that use
the DRAM page cache to cache the entire data set. The large data
set is too large to fit in DRAM, so the page cache is less useful.

Figure 5 shows the Filebench throughput. In the fileserver
workload, NOVA outperforms other file systems by 1.8x–16.6x
on STT-RAM, and between 22% and 9.1x on PCM for the larg­
est data set. NOVA outperforms ext4-data by 11.4x and btrfs
by 13.5x on STT-RAM, while providing equivalent consistency
guarantees. NOVA on STT-RAM delivers twice the throughput
compared to PCM, because of PCM’s lower write bandwidth.

Web proxy is a read-intensive workload, and it puts all the test
files in one large directory. For the small data set, NOVA per­
forms similarly to ext4 and ext4-DAX, and 2.1x faster than ext4-
data. For the large workload, NOVA performs 36%–53% better
than F2FS and ext4-DAX. PMFS and NILFS2 perform poorly in
this test because their directory designs are not scalable.

Web server is a read-dominated workload and does not involve
any directory operations. As a result, non-DAX file systems ben­
efit significantly from the DRAM page cache, and the workload

Workload Average file size I/O size (r/w) Threads R/W ratio Number of files (Small/Large)

Fileserver 128 KB 16 KB/16 KB 50 1:2 100K:400K

Webproxy 32 KB 1 MB/16 KB 50 5:1 100K:1M

Webserver 64 KB 1 MB/8 KB 50 10:1 100K:500K

Varmail 32 KB 1 MB/16 KB 50 1:1 100K:1M

Table 1: Filebench workload characteristics. The selected four workloads have different read/write ratios and access patterns.

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  25

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

size has a large impact on performance. On STT-RAM, with
the large data set, NOVA performs 63% better on average than
non-DAX file systems. On PCM, for the small data set, non-DAX
file systems are 33% faster on average due to DRAM caching.
However, for the large data set, NOVA’s performance remains
stable while non-DAX performance drops by 60%.

Varmail emulates an email server with a large number of small
files and involves both read and write operations. NOVA out­
performs btrfs by 11.1x and ext4-data by 3.1x on average, and
outperforms the other file systems by 2.2x–216x. NILFS2 and
PMFS still suffer from poor directory operation performance.

Overall, NOVA achieves the best performance in almost all cases
and provides data consistency guarantees that are as strong or
stronger than the other file systems. The performance advan­
tages of NOVA are largest on write-intensive workloads with
large number of files.

Garbage Collection Efficiency
We designed NOVA to perform garbage collection efficiently
and maintain stable performance under heavy write loads, even
when the file system is nearly full. To verify these character­
istics, we ran a 30 GB write-intensive fileserver workload and
adjusted the amount of NVMM available to bring utilization to
95%. Then we compared NOVA’s behavior with the other log-
structured file systems, NILFS2 and F2FS. We ran the test with
PMEP configured to emulate STT-RAM.

Figure 6 shows the result. NILFS2 failed after less than 10 seconds
since it ran out of space due to garbage collection inefficiencies.
F2FS failed after running for 158 seconds after suffering a 60%
drop in throughput due to log cleaning overhead. NOVA outper­
formed F2FS by 12x, and the throughput remained stable over time.

We found that the longer NOVA runs, the more efficient fast GC
becomes, eventually accounting for the majority of reclaimed pages.

Recovery Overhead
NOVA provides fast recovery from both normal dismounts and
power failures. To measure the recovery overhead, we used the
three workloads in Table 2. Each workload represents a different
use case for the file systems: Videoserver contains a few large
files accessed with large-size requests; mailserver includes a
large number of small files and the request size is small; file­
server is in-between. For each workload, we measure the cost of
mounting after a normal shutdown and after a power failure.

Table 3 summarizes the results. With a normal shutdown, NOVA
recovers the file system in 1.2 ms, since NOVA can restore the
allocator state from the a checkpoint. After a power failure,
NOVA recovery time increases with the number of inodes and as
the I/O operations that created the files become smaller (since
small I/O operations result in more log entries). Recovery runs
faster on STT-RAM than on PCM because PCM has higher read
latency. On both PCM and STT-RAM, NOVA is able to recover 50

Figure 5: Filebench throughput with different file system patterns and dataset sizes on STT-RAM and PCM. Each workload has two data-set sizes so that
the small one can fit in DRAM entirely while the large one cannot.

26    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

GB data in 116 ms, achieving failure recovery bandwidth higher
than 400 GB/s.

Conclusion
We have implemented and described NOVA, a log-structured file
system designed for hybrid volatile/non-volatile main memo­
ries. NOVA extends ideas of LFS to leverage NVMM, yielding
a simpler, high-performance file system that supports fast and
efficient garbage collection and quick recovery from system
failures. Our measurements show that NOVA outperforms exist­
ing NVMM file systems by a wide margin on a wide range of
applications while providing stronger consistency and atomicity
guarantees.

Acknowledgments
This work was supported by STARnet, a Semiconductor
Research Corporation program, sponsored by MARCO and
DARPA. We would like to thank John Ousterhout, Niraj Tolia,
Isabella Furth, Rik Farrow, and the anonymous FAST review­
ers for their insightful comments and suggestions. We are also
thankful to Subramanya R. Dulloor from Intel for his support
and hardware access.

Figure 6: Performance of a full file system. The test runs a 30 GB file-
server workload under 95% NVMM utilization with different durations.

Table 2: Recovery workload characteristics. The number of files and
typical I/O size both affect NOVA’s recovery performance.

Table 3: NOVA recovery time on different scenarios. NOVA is able to
recover 50 GB data in 116 ms in case of power failure.

Data set File size Number
of files Data-set size I/O size

Videoserver 128 MB 400 50 GB 1 MB

Fileserver 1 MB 50,000 50 GB 64 KB

Mailserver 128 KB 400,000 50 GB 16 KB

Data set Videoserver Fileserver Mailserver

STTRAM-normal 156 μs 313 μs 918 μs

PCM-normal 311 μs 660 μs 1197 μs

STTRAM-failure 37 ms 39 ms 72 ms

PCM-failure 43 ms 50 ms 116 ms

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  27

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

References
[1] Intel and Micron produce breakthrough memory technology:
http://newsroom.intel.com/community/intel_newsroom
/blog/2015/07/28/intel-and-micron-produce-breakthrough
memory-technology.

[2] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S.
Swanson, “Onyx: A Prototype Phase Change Memory Storage
Array,” in Proceedings of the 3rd USENIX Conference on Hot
Topics in Storage and File Systems (HotStorage ’11).

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D.
Burger, and D. Coetzee, “Better I/O through Byte-Addressable,
Persistent Memory,” in Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP ’09),
pp. 133–146.

[4] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D.
Reddy, R. Sankaran, and J. Jackson, “System Software for Per­
sistent Memory,” in Proceedings of the 9th European Conference
on Computer Systems (EuroSys ’14), ACM, pp. 15:1–15:15.

[5] Filebench file system benchmark: http://sourceforge.net
/projects/filebench.

[6] PMEM: the persistent memory driver + ext4 direct access
(DAX): https://github.com/01org/prd.

[7] Linux POSIX file system test suite: https://lwn.net/Articles
/276617/.

[8] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H. L. Lung, and C.
Lam, “Phase-Change Random Access Memory: A Scalable
Technology,” IBM Journal of Research and Development, vol. 52,
no. 4.5, July 2008, pp. 465–479.

[9] M. Rosenblum and J. K. Ousterhout, “The Design and Imple­
mentation of a Log-Structured File System,” ACM Transactions
on Computer Systems (TOCS), vol. 10, no. 1, 1992, pp. 26–52.

[10] M. Wilcox, “Add Support for NV-DIMMs to ext4: https://
lwn.net/Articles/613384/.

[11] J. Xu and S. Swanson, “NOVA: A Log-Structured File
System for Hybrid Volatile/Non-Volatile Main Memories,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), pp. 323–338.

[12] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and
Energy Efficient Main Memory Using Phase Change Memory
Technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA ’09), ACM,
 pp. 14–23.

