
28    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SYSTEMS

Interview with Timothy Roscoe
R I K F A R R O W

I interviewed Mothy Roscoe over six years ago, after I became aware of
the Barrelfish operating system [1]. Barrelfish was designed specifically
for the new generation of many-core CPU chips, and Mothy was one of

the people on the team who built the OS [2].

Since that time, Intel released the Single-chip Cloud Computer [3], and the Barrelfish team
created a port for this unusual chip. The SCC was designed as a research microprocessor
with 48 cores and a message passing system. Today, Intel has moved toward the Xeon Phi, a
chip that sits on the PCI express bus, exposes many processing cores, and provides a Linux-
based stack for communicating with the Phi. The Phi has 68 cores and is designed for HPC.

A number of sophisticated 64-bit ARM multicore server chips are appearing that look like a
great fit for Barrelfish. Mothy told me that Barrelfish does support some of these, but actu­
ally getting documentation from vendors can prove difficult in some cases.

I’d had the opportunity to chat with Mothy during many systems conference luncheons, and I
wanted to follow up on some of those conversations and share them.

Mothy is co-chair of OSDI ’16, along with Kim Keeton of HP Labs and HP Enterprise. The
discussion of systems conference program committees that I mention in “Musings” (page 2)
occurred after we had conducted this interview.

Rik: Please update us on what has been happening with Barrelfish since we last talked
(April 2010).

Mothy: Quite a lot—it’s been an interesting journey! To some extent the focus of the project
has changed, but it’s remarkable how many of our original goals, and our conjectures about
the challenges of future hardware, turned out to be on the mark.

When we started in 2007, we thought that the hard problems in OS design were scaling,
heterogeneity, and diversity. Those challenges led us to the multikernel model: by structuring
the OS as a distributed set of cores communicating with messages, we handle heterogeneity,
lack of cache coherence and/or shared memory, dynamic cores, etc. in a single elegant
framework.

The one challenge the multikernel model does not solve directly is scalability. However, we
find it a lot easier to think about scaling in the context of message passing rather than shared
memory—and you also see this trend in other areas like HPC and large-scale “Big Data”
applications as well.

We’ve learned a lot about modern hardware so far in building Barrelfish and a lot about how
to write a modern OS for that hardware. There is a huge difference between building a real
OS from scratch with a different design versus tweaking existing Linux or Windows kernels.
We were lucky to have the opportunity to pull off a sufficiently large engineering project
over a long period of time. For us, the big payoff happened after six years on when companies
started to get very interested in Barrelfish—that’s a long time by the standards of most uni­
versity research projects.

Timothy Roscoe (aka Mothy) is
a full Professor in the Systems
Group of the Computer Science
Department at ETH Zurich.
He received a PhD from the

Computer Laboratory of the University of
Cambridge, where he was a principal designer
and builder of the Nemesis operating system,
as well as working on the Wanda microkernel
and Pandora multimedia system. After three
years working on Web-based collaboration
systems at a startup company in North
Carolina, Mothy joined Sprint’s Advanced
Technology Lab in Burlingame, California,
working on cloud computing and network
monitoring. He then joined Intel Research at
the University of California, Berkeley in April
2002, as a principal architect of PlanetLab,
an open, shared platform for developing
and deploying planetary-scale services. In
September 2006, he spent four months as a
visiting researcher in the Embedded and Real-
Time Operating Systems group at National
ICT Australia in Sydney before joining ETH
Zurich in January 2007. His current research
interests include network architecture and the
Barrelfish multicore research operating system.
He was recently elected Fellow of the ACM
for contributions to operating systems and
networking research.

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  29

SYSTEMS
Interview with Timothy Roscoe

Along the way, we’ve published a lot of papers and graduated a
bunch of PhD students. Academically, it’s been a huge success
so far. A common criticism of big projects like this is that they
don’t generate enough papers in the modern academic climate—
several colleagues (not at ETH) have suggested that it’s better
to focus on smaller projects and higher paper counts so that
students find it easier to get academic jobs.

I want the students to publish, but I feel strongly that paper mills
are not the only way to run a university research group, and
paper-driven research isn’t a good way to have long-term impact
(it’s also not ETH’s mission). Simon Peter, the PhD student who
wrote the first line of code of Barrelfish, is now a professor at
University of Texas, Austin. He also won Best Paper at OSDI
2014 with Arrakis [5], a variant of Barrelfish, so we seem to be
doing OK nine years on.

In building Barrelfish, we also made a bunch of decisions that
were somewhat arbitrary at the time—we really felt they were a
good way to build an OS, but we didn’t view them as essential to
the research. In retrospect, however, many of these choices were
highly fortuitous.

For example, we adopted a capability model (which we extended
from seL4) for managing all memory resources, and this turned
out to have profound consequences much later. It’s only now that
we’re finding this is a great match for very large main memories,
like HP’s “The Machine” project.

The big change came in about 2012. Barrelfish had become a
useful vehicle for OS research and teaching at ETH, despite
the sometimes uphill struggle to convince people that “it’s not
Linux” was not a showstopper for a realistic OS, even in the
research community.

At this point, we started being contacted by companies (hard­
ware vendors and others) who had become interested in Barrel­
fish. They were building hardware that didn’t look like a 1980s
VAX, and it was dawning on them that Linux wasn’t a good fit for
these new hardware designs.

It was this interest that convinced us to keep going with the
project rather than move on to new things. It was great to feel
that the ideas that Paul Barham, Rebecca Isaacs, Simon Peter,
Andrew Baumann, myself, and others had started with back in
2007 had finally been vindicated.

We’ve now got a great core development group at ETH (includ­
ing one full-time software engineer and, hopefully, more in the
future), we accept external contributions (both patches and pull
requests on GitHub), and we’re looking to support more hard­
ware as we work with more vendors.

We’ve also got a ton of ideas, thoughts, war stories, etc. that we’d
really like to talk about, but which are a bit of a challenge to

fit into traditional computer science conference publishing or
system documentation—we’re starting a blog of these to see what
interest there is out there.

Rik: What’s the main research direction of the project now?

Mothy: One of the biggest driving challenges right now is
hardware complexity. Modern computer hardware is incredibly
complex in terms of peripheral devices, interconnects, memory
hierarchies, etc.

To take one example: most people think they know what a physical
address is; every memory cell or device register sits at a unique
physical address, which is what you can use to access that loca­
tion by having the MMU put out that address on the memory
interconnect. Unfortunately, this just isn’t true any more.

Instead, within a single machine (even a single SoC), different
cores will see the same memory location appear at different
physical addresses. Each core will only be able to address a sub­
set of all the memory locations (storage cells or device registers),
and these subsets are different, but not necessarily disjoint: they
intersect in interesting ways. The access latency and bandwidth
to a given location also varies, of course. For any pair of cores in
the machine, the same location might be at the same address, or
different addresses, or only addressable from one core, and might
or might not be coherent in cache.

This happens on modern PCs, phone SoCs, and pretty much any
other piece of “mainstream” hardware. We also see analogous
complexity and diversity across systems in DMA engines, inter­
rupt routing, network interfaces, and so on.

So what do we do? Nobody has a really good, crisp, formal
description of what, say, a physical address is these days. The
closest you find in traditional OS designs is a device tree
(http://www.devicetree.org/), but device trees are really a file
format—it doesn’t capture semantics in a way you can make
strong statements about.

We’d like to be able to put the hardware/software interface that
OSes must use on a much more sound formal footing. What we’re
doing is writing semi-formal descriptions of all the memory sys­
tems, interrupt routing models, interconnect topologies that we
can find, and then devising representations of these in subsets of
first-order logic.

The short-term benefit of this is that Barrelfish can easily adapt
to new hardware online—we’ve always programmed PCIe buses
using Constraint Logic Programming in Barrelfish at boot time,
and we’re doing a lot more in this line. It’s just a much easier
way to engineer a more portable, general purpose OS for modern
hardware. And in the medium term, of course, we can use these
models and representations to provide a basis for formal verifi­
cation of system software.

30    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SYSTEMS
Interview with Timothy Roscoe

The ultimate goal, however, is a “software-centric” description
of hardware that allows us as OS designers to talk about what
kinds of hardware designs are “tasteful” as far as the OS is con­
cerned, and what hardware design patterns are not. OS people
are pretty good at critiquing bad hardware designs (and there are
many!), but hardware designers pretty much ignore OS folks, and
one reason for this is that we’re not nearly as good at saying up
front what the rules and patterns are for good hardware inter­
face design.

This sounds philosophical, but there’s very little academic work
on this, and it’s amazing how much traction we’ve got for these
long-term ideas from industry partners. It’s fundamental work
that also has direct short-term applicability in industry.

Rik: Any plans on porting Barrelfish to more ARM-based server
SoCs? It sounds like some of them might be vaguely similar to
the Intel cloud-on-a-chip.

Mothy: We’re always interested in future hardware platforms,
if we can find out anything about them :-). If you’re writing an
operating system for new hardware in an academic environ­
ment, a constant headache is getting documentation. Pretty
much any hardware vendor assumes you want to run Linux on
their chip, and that’s it, so why would you want documentation?

We sign NDAs, and sometimes this really helps, and sometimes
it doesn’t. But even finding someone to talk to about getting
documentation is often the challenge.

Sometimes it works out great—Intel actually approached us
before the Single-chip Cloud Computer was announced some
years back, and my student did a port to the SCC that was ready
when they launched. ARM, Intel, and some vendors (such as
TI) released extremely detailed documentation. AMD usually
does as well, but we’ve found nothing about the Seattle [A1100]
processors, for example, and haven’t found anyone to ask about it
either.

There is a flurry of really interesting ARMv8-based server chips
appearing, however, and we’re excited about supporting them.
We currently support AppliedMicro’s X-Gene 1 SoC and ARM’s
FAST models for emulated hardware, but we’ll talk to anyone
who is prepared to share documentation with us.

Rik: In conversations we’ve had during USENIX conferences,
you mentioned that Barrelfish will only support certain pro­
gramming languages. Can you explain the thinking behind that
decision?

Mothy: Actually, we’re happy if Barrelfish supports any pro­
gramming language that people would like. As a small team,
there’s a limit to the number that we can support ourselves, but
we’re happy to accept contributions!

We’ve had various student projects porting language runtimes
to Barrelfish, and it’s usually not too much of a problem. The key
challenge is generally that languages often implicitly assume a
POSIX-like system, and Barrelfish deliberately isn’t like POSIX.
This makes a fast Java runtime, for example, more work than
Rust, which was extremely easy to bring up.

What you’re probably referring to is the group decision about
which languages we could use in the OS itself. Remember this
was back in 2008, so this is before Go, D, Rust, Swift, and Dart
had traction. The discussion was remarkably short and pretty
much unanimous: we decided on C, assembly, Haskell, and
Python for tools. We also felt happy with OCaml and Ruby, but
in the event we didn’t use them. We unanimously banned Java,
C#, C++, and Perl. Nothing has happened to make us regret this
decision.

Rik: Functional programming languages are becoming increas­
ing popular. We now have a unikernel OS, MirageOS, but it
relies on OCaml programming. When I mentioned just how hard
I found it to write functional programs, you suggested that it
might take someone six months to switch over to a functional
programming style. Could you elaborate?

Mothy: We don’t have any studies to back this up, and it depends
ultimately on the programmer. However, OS kernels have always
employed a variety of programming paradigms expressed in
assembly or C, and good OS kernel hackers are generally com­
fortable with a variety of different ways of expressing com­
putations inside the OS. You see a lot of snippets of functional
programming in the Linux kernel, for example.

Choice of languages are a different matter. It’s useful to contrast
unikernels from operating systems: they’re very different, and
ultimately complementary.

We like to use a “functional” (in a different sense) definition of
an OS—it is “that which manages, multiplexes, and protects the
hardware resources of the machine.” In this sense, it could be a
hypervisor like Xen, or a traditional OS like Linux or Windows,
or a multikernel like Barrelfish.

A unikernel like MirageOS is essentially a runtime for a single
application that executes in a resource container. Some people
call this a LibraryOS—a term which goes back to exokernel sys­
tems like Aegis and Nemesis.

For an OS, a garbage-collected language is problematic because
you are interested in providing performance isolation between
competing, untrusted applications (such as containers). Hence,
implementations using a language with more predictable perfor­
mance like C, Rust, or even C++ make a lot of sense.

For a unikernel, you’re not worried about scheduling, resource
sharing, or crosstalk since you’re already isolated in a container.
What you really want here is something which works well from a

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  31

SYSTEMS
Interview with Timothy Roscoe

software development and correctness perspective, and lan­
guages like OCaml are great for this kind of environment.

As an aside, if you move to a world where all your applica­
tions are running in containers over unikernels, the question
naturally arises as to what the “ideal” underlying OS is. It’s not
Linux or Windows, and it’s not Barrelfish either yet, but we are
evolving Barrelfish that way—the Arrakis work is a step in that
direction, for example.

References
[1] R. Farrow, “The Barrelfish Multikernel: Interview with
Timothy Roscoe.” ;login:, vol. 35, no. 2 (April 2010):
bit.ly/29lczBY.

[2] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The
Multikernel: A New OS Architecture for Scalable Multicore
Systems,” in Proceedings of the 22nd ACM Symposium on OS
Principles, October 2009: http://www.sigops.org/sosp/sosp09
/papers/baumann-sosp09.pdf.

[3] “Intel Single-chip Cloud Computer,” 2003: intel.ly/29oPSNx.

[4] Intel Xeon Phi: http://www.intel.com/content/www/us/en
/processors/xeon/xeon-phi-detail.html.

[5] S. Peter and T. Anderson, “Arrakis: The Operating System
as Control Plane.” ;login:, vol. 38, no. 4 (August 2013):
bit.ly/29gu97f.

XKCD

xkcd.com

http://bit.ly/29lczBY
http://intel.ly/29oPSNx
http://bit.ly/29gu97f

