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Design Guidelines for High Performance 
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Modern RDMA hardware offers the potential for exceptional per­
formance, but achieving this performance is challenging. Directly 
mapping an application’s low-level reads and writes to RDMA 

primitives is often suboptimal, and design choices, including which RDMA 
operations to use and how to use them, significantly affect observed perfor­
mance. We lay out guidelines that can be used by system designers to navi­
gate the RDMA design space. Our guidelines emphasize paying attention to 
low-level details such as individual RDMA packets, PCIe transactions, and 
NIC architecture. We present two case studies—a key-value store and a net­
worked sequencer—demonstrating the effectiveness of these guidelines.

In recent years, new entrants into the datacenter and cluster networking space have started 
to provide hardware capabilities formerly available only in expensive High Performance 
Computing (HPC) interconnects. The NICs (network interface cards) from manufacturers 
such as Mellanox now support RDMA (remote direct memory access) features out of the box, 
at a price comparable to non-RDMA-capable NICs.

The “RDMA Background” section describes RDMA in more detail, but at a high level RDMA 
is a networking approach consisting of two basic concepts:

1.	 Operating system “stack bypass”: In many applications, the overhead of going through the 
kernel networking layers is the bottleneck to processing speed. This is particularly the case 
with applications that send and receive relatively small amounts of data per packet ex­
change, but do so at high rates.

2.	 Full CPU bypass: For certain, more-specialized applications, RDMA hardware can allow 
one computer to read and write directly to/from the memory of another node in the cluster, 
without the remote node’s CPU or OS being involved at all.

RDMA has been a key ingredient of HPC and supercomputing environments for years, but it 
is also intriguing to datacenter application developers. RDMA hardware presents program­
mers with numerous choices, so using it efficiently requires care. For example, should applica­
tions provide reliability, or should the NIC’s reliability protocol be used? In the rest of this 
article, we help readers navigate this space to understand what RDMA capabilities might be 
the best match for their application. Our open-source rdma_bench toolkit (https://github.com 
/efficient/rdma_bench) can be used for evaluating and optimizing the most important sys­
tem factors that affect end-to-end throughput when using RDMA.

RDMA Background
RDMA is a general approach to networking for which several different models exist. The 
most popular model is the Virtual Interface Architecture (VIA) [3]. Other models include 
open-source specifications such as Portals from Sandia Labs, and proprietary HPC archi­
tectures such as Fujitsu’s Tofu interconnect. For a given model, there can be more than one 
implementation. For example, VIA has three well-known implementations: InfiniBand, 
RoCE (RDMA over Converged Ethernet), and iWARP (Internet Wider Area RDMA Proto­
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col). Our work focuses on VIA-based NICs, which are the only 
commodity NICs currently available. Several observations 
are applicable to other architectures as well. Table 1 shows an 
abstract RDMA API for VIA NICs.

Compared to conventional Ethernet-based TCP/IP network­
ing, RDMA networks remove several sources of CPU overhead. 
They support user-level NIC access, removing the overhead of 
the kernel’s heavyweight networking stack. At the remote host, 
RDMA reads and writes bypass the CPU. RDMA NICs typi­
cally implement a reliable transport layer, freeing up host CPU 
cycles used for implementing a reliable protocol such as TCP/IP. 
RDMA-capable networks with 100 Gbps of per-port bandwidth, 
and 2 μs round-trip latency are commercially available.

Figure 1 shows the relevant hardware components of a machine 
in a modern RDMA cluster. A NIC with one or more ports con­
nects to the PCIe controller of a multicore CPU, and provides 
direct access to the memory of remote nodes.

Verb types: One-sided verbs (RDMA operations) operate 
directly on a remote node’s memory, bypassing its CPU, and 
include RDMA reads, writes, and atomic operations. Two-sided 
verbs include the send and receive verbs; their functionality 
resembles send() and recv() functions in traditional sockets 
programming. These verbs involve the responder’s CPU: the 
send’s payload is written to an address specified by a receive that 
was posted previously by the responder’s CPU.

The choice of verbs is a key determinant of application perfor­
mance, but it is not the only factor. The choice of transport and the 
verb initiation method (discussed below) require equal attention.

Queue pairs: RDMA hosts communicate by posting verbs 
to interfaces called queue pairs (QPs). On completing a verb, 
the requester’s NIC optionally signals completion by writing 
a completion queue entry to host memory via direct memory 
access (DMA).

RDMA transports are either reliable or unreliable and are 
either connected or unconnected (also called datagram). With 
reliable transports, the NIC uses acknowledgments to guarantee 
in-order delivery of messages. Unreliable transports do not pro­
vide this guarantee. However, modern high-speed networks such 
as InfiniBand and RoCE use a reliable link layer, so unreliable 
transports do not lose packets due to congestion or bit errors. 
Connected transports require one-to-one connections between 
QPs, whereas a datagram QP can communicate with multiple 
QPs. Datagram transport is more scalable, but it only supports 
two-sided verbs.

Current RDMA transports include Reliable Connected (RC), 
Unreliable Connected (UC), and Unreliable Datagram (UD). 
Note that although these transports resemble non-RDMA trans­
port layers to some extent (e.g., RC and UD are analogous to TCP 
and UDP, respectively), the underlying protocol and message 
formats are different.

Verb initiation: To initiate RDMA operations, the user-mode 
NIC driver at the requester creates work queue elements 
(WQEs) in host memory. These WQEs are transferred to the 
NIC over the PCIe bus in one of two ways. In the “WQE-by-
MMIO” method, the CPU directly writes the WQEs to device 
memory using memory-mapped I/O (MMIO). In the “Doorbell” 
method, the CPU writes a short Doorbell message to the NIC, 
indicating the new WQEs. This action is called “ringing the 
Doorbell.” On receiving the Doorbell, the NIC reads the WQEs 
from the CPU via a DMA read. Both methods bypass the host’s 
OS kernel. Figure 2 summarizes the two methods. The Doorbell 
method reduces CPU use: it requires one MMIO for a batch of 
WQEs, whereas WQE-by-MMIO requires separate MMIOs for 
each WQE.

Factors Affecting RDMA System Performance
In datacenters, RDMA is being proposed for use in key-value 
stores, graph processing systems, and online transaction pro­
cessing systems [1, 2]. These applications access irregular data 
structures (e.g., hash tables and trees) and use small packet sizes 
on the order of tens of bytes. Three main factors are important 
for high performance with these workloads: the extent to which 
remote CPU bypass is used, low-level optimizations for verbs, 
and the NIC architecture.

Figure 2: The WQE-by-MMIO and Doorbell methods for transferring two 
WQEs. Arrows represent PCIe transactions. Solid arrows are PCIe MMIO 
writes; the dashed arrow is a PCIe DMA read. Arrow width represents 
transaction size.Verb Abstract API function call

WRITE 
READ

write(qp, local_buf, size, remote_addr) 
  read(qp, local_buf, size, remote_addr)

SEND 
RECV

  send(qp, local_buf, size) 
  recv (qp, local_buf, size)

Table 1: Abstract RDMA API showing one-sided (WRITE, READ) and 
two-sided (SEND, RECV) verbs

Figure 1: Hardware components of a node in an RDMA cluster
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Remote CPU Bypass
In an RDMA-based datastore, data is stored in the memory of 
a server machine and is accessed by client machines. To take 
advantage of RDMA’s ability to bypass the remote CPU, several 
projects use one-sided READs and WRITEs to accomplish 
this. For datastore GET operations, they do so by traversing the 
remote data structure using READs. This typically requires 
multiple round trips. For example, Pilaf [6] is an RDMA-based 
key-value store that handles key-value GET operations in 2.6 
READs on average. It uses 1.6 READs to access its hash table–
based index to locate the value’s address, and one READ to fetch 
the value. FaRM’s key-value store [1] reduces the number of 
READs required for the index from 1.6 to 1.

In contrast, the design of our HERD system [4] is focused on reduc­
ing the number of round trips to one. To accomplish this, HERD 
does not entirely bypass the remote CPU. Instead of traversing the 
remote data structure, HERD clients send their requests to the 
server using an RPC request. The HERD server traverses the data 
structure for the client, but it does so in local memory.

Local memory accesses are 10x–100x faster than remote 
accesses in latency, bandwidth, and the amount of host CPU they 
consume. Then the server sends a response to the client. Several 
combinations of verbs and transports can be used to implement 
fast RPCs; HERD uses a combination of one-sided and two-sided 
verbs over unreliable transport, which is optimized for high per­
formance and number-of-clients scalability. Figure 3 shows the 
difference in HERD and READ-based key-value stores.

HERD’s RPC mechanism is very fast: its throughput and latency 
is similar to RDMA reads. As a result, HERD delivers higher 
throughput and lower latency than Pilaf or FaRM’s key-value 
store. Key to achieving high RPC throughput is the use of the 
low-level optimizations discussed below. An important lesson 
from HERD is that one-sided RDMA is not always the best solu­
tion; using an RDMA network simply for fast, OS kernel–bypass 
RPCs is an equally important design to consider.

Low-Level Verb Optimizations
RDMA verbs allow for a variety of low-level optimizations. 
Effectively using these optimizations requires a good under­
standing of how different verbs use the CPU, the PCIe bus, and 
the RDMA network, and how this varies when different optimi­
zations are enabled. Our USENIX ATC paper [5] addresses this 
topic thoroughly. We discuss the most important optimizations 
briefly here.

Unreliable transports reduce NIC overhead by not requiring 
RDMA acknowledgment packets, and provide higher perfor­
mance than reliable transports. Unreliable transports do not 
provide reliable packet delivery. However, modern RDMA imple­
mentations such as InfiniBand use a reliable link layer, so even 
unreliable transports drop packets extremely rarely.

Payload inlining reduces NIC processing and PCIe bandwidth 
use by eliminating the DMA read for the payload. By default, 
WRITEs and SEND work queue elements contain a pointer to 
the payload; the NIC reads it via a DMA read. Small payloads up 
to a few hundred bytes can be encapsulated inside the WQE and 
written to the NIC using MMIO.

Selective signaling also reduces NIC processing and PCIe 
bandwidth use by eliminating the completion DMA. By default, 
the NIC writes a completion queue entry to host memory on 
completing a verb. If an application can detect completion using 
alternate methods (e.g., using a future response from a remote 
node), it can mark the verb as “unsignaled,” instructing the NIC 
to not issue the completion DMA.

Doorbell batching reduces CPU use and PCIe bandwidth use by 
allowing applications to issue a batch of RDMA operations using 
one Doorbell. This reduces CPU use by requiring only one MMIO 
per batch. The default approach of transferring WQEs one by one 
using WQE-by-MMIO requires separate MMIOs for each WQE.

Figure 4a and Figure 4b show the PCIe and RDMA network 
messages for one WRITE without optimizations, and two 
WRITEs with the above optimizations, respectively.

NIC Architecture
Modern high-speed NICs are composed of multiple process­
ing units (PUs), such as packet processing engines and DMA 
engines. Exploiting parallelism among the NIC’s PUs is nec­
essary for high performance but requires explicit attention. 
Further, RDMA verbs and workloads that introduce contention 
between the PUs should be avoided.

Engage multiple NIC PUs: A common RDMA programming 
decision is to use as few queue pairs as possible, but doing so 
limits NIC parallelism to the number of QPs. This is because 
operations on the same QP have ordering dependencies and are 
ideally handled by the same NIC processing unit to avoid cross-

Figure 3: Messages for a GET operation in (a) a READ-based key-value 
store and (b) HERD
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PU synchronization. For example, in datagram-based RDMA 
communication, one QP per CPU core is sufficient for commu­
nication with all remote cores. However, it “binds” a CPU core 
to a PU and may limit core throughput to PU throughput. This 
is likely to happen when per-message application processing is 
small and a high-speed CPU core overwhelms a less powerful 
PU. In such cases, using multiple QPs per core increases CPU 
efficiency; we call this the multi-queue optimization.

Avoid contention among NIC PUs: RDMA operations that 
require cross-QP synchronization introduce contention among 
PUs, and can perform over an order of magnitude worse than 
uncontended operations. For example, RDMA provides atomic 
operations such as compare-and-swap and fetch-and-add on 
remote memory. To our knowledge, all commodity NICs avail­
able at the time of writing use internal concurrency control for 
atomics: PUs acquire an internal lock for the target address and 
issue read-modify-write over PCIe. Therefore, the NIC’s internal 
locking mechanism, such as the number of locks and the map­
ping of atomic addresses to these locks, is important. Note that 
due to the limited SRAM in NICs, the number of available locks 
is small, which amplifies contention in the workload.

Case Studies
We now describe the design of two high-performance RDMA-
based systems: the HERD key-value store and the X-Seq 
sequencer. X-Seq is named Spec-S0 in our USENIX ATC paper [5].

RPC Overview
For both systems, we use an RPC protocol for communication 
between clients and the key-value/sequencer server. In HERD, 
clients use unreliable WRITEs to write requests to a request 
memory region at the server. A server thread (a worker) checks 
for new requests from every client by polling on the request 
memory region, and collects a batch of requests. It computes a 
batch of responses, and sends them to clients using the SEND 

verb over datagram transport. The worker uses a batched Door­
bell for the batch of response SENDs. To use the multi-queue 
optimization, each worker alternates among a configurable 
number (1–3) of datagram QPs across batches of response SENDs. 
In addition to unreliable transport, Doorbell batching, and 
multi-queue, the server also uses payload inlining and selective 
signaling.

Key-Value Stores
Figure 5 shows the throughput of a HERD key-value store server 
with an increasing number of server CPU cores. We use a cluster 
with Mellanox Connect-IB InfiniBand NICs, and 14-core Intel 
CPUs. The key-value store maps 16-byte keys to 32-byte values; 
the workload consists of keys chosen uniformly at random and 
5% PUT operations. HERD’s single-core throughput is 12.3 mil­
lion operations/s (Mops), and its peak throughput is 98.3 Mops. 
At its peak, HERD is bottlenecked by PCIe bandwidth.

Figure 5 also compares HERD to a READ-based key-value store 
that requires two RDMA reads per GET operation. The Connect-
IB NIC supports up to 120 million READs/s, so such a READ-based 
key-value store is limited to 60 Mops. HERD delivers up to 64% 

(a) RDMA and PCIe messages for one RDMA write (b) RDMA and PCIe messages for two WRITEs with optimizations 

Figure 4: Effect of optimizations on RDMA and PCIe messages. The optimized WRITEs are unreliable, inlined, unsignaled, and are issued using a batched 
Doorbell. The dashed messages are removed in the optimized version; the dotted messages are repurposed.

Figure 5: Throughput of HERD and READ-based key-value stores
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higher throughput, while using a single round trip per operation. 
HERD uses significant server CPU resources: it requires at least 
seven CPU cores to outperform a READ-based design. However, 
HERD uses less client CPU than a READ-based store because it 
requires fewer client-initiated data transmissions.

Networked Sequencers
Centralized sequencers are useful building blocks for a variety of 
network applications, such as ordering operations in distributed 
systems via logical or real timestamps. A centralized sequencer 
can be the bottleneck in high-performance distributed systems, 
so building a fast sequencer is an important step to improving 
whole-system performance.

Our X-Seq sequence server runs on a single machine and 
provides an increasing eight-byte integer to client processes 
running on remote machines. The worker threads at the server 
share an eight-byte counter. After collecting a batch of N client 
requests, a worker thread atomically increments the shared 
counter by N, thereby claiming ownership of a sequence of N 
consecutive integers. It then sends these N integers to the clients 
using a batched Doorbell (one integer per client).

Directly adapting HERD’s RPC protocol to a sequencer provides 
good performance. However, even higher throughput and scal­
ability can be achieved by optimizing the RPCs specifically for 
the sequencer. The key insight is that the request and response 
packets in the sequencer are small, with up to eight bytes of 
data. This allows RPC optimizations that reduce the number of 
cache lines used by WQEs, and DMAs issued, by 50%. We also 
use a speculation technique where the clients speculate the most 
significant bytes of the current sequencer number.

Figure 6 shows the throughput of X-Seq with increasing server 
CPU cores. Its single-core throughput is 16.5 Mops, and its peak 
throughput is 122 Mops. Figure 6 also shows the throughput of 
a sequencer where clients use the atomic fetch-and-add verb to 
increment an eight-byte counter in the server’s memory. This 
sequencer achieves only 2.24 Mops.

The poor performance of the atomics-based sequencer is 
because of lock contention among the NIC’s processing units. 
The effects of contention are exacerbated by the duration for 
which locks are held—several hundred nanoseconds for PCIe 
round trips. Our RPC-based sequencers have lower contention 
and shorter lock duration: the programmability of general-
purpose CPUs allows us to batch updates to the counter, which 
reduces cache line contention, and proximity to the counter’s 
storage (i.e., core caches) makes these updates fast. 

Code release: The code for our low-level RDMA benchmarks, 
HERD, and X-Seq is available at https://github.com/efficient 
/rdma_bench. 
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