
38    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

PROGRAMMING

Design Guidelines for High Performance
RDMA Systems
A N U J K A L I A , M I C H A E L K A M I N S K Y , A N D D A V I D G . A N D E R S E N

Modern RDMA hardware offers the potential for exceptional per­
formance, but achieving this performance is challenging. Directly
mapping an application’s low-level reads and writes to RDMA

primitives is often suboptimal, and design choices, including which RDMA
operations to use and how to use them, significantly affect observed perfor­
mance. We lay out guidelines that can be used by system designers to navi­
gate the RDMA design space. Our guidelines emphasize paying attention to
low-level details such as individual RDMA packets, PCIe transactions, and
NIC architecture. We present two case studies—a key-value store and a net­
worked sequencer—demonstrating the effectiveness of these guidelines.

In recent years, new entrants into the datacenter and cluster networking space have started
to provide hardware capabilities formerly available only in expensive High Performance
Computing (HPC) interconnects. The NICs (network interface cards) from manufacturers
such as Mellanox now support RDMA (remote direct memory access) features out of the box,
at a price comparable to non-RDMA-capable NICs.

The “RDMA Background” section describes RDMA in more detail, but at a high level RDMA
is a networking approach consisting of two basic concepts:

1.	 Operating system “stack bypass”: In many applications, the overhead of going through the
kernel networking layers is the bottleneck to processing speed. This is particularly the case
with applications that send and receive relatively small amounts of data per packet ex­
change, but do so at high rates.

2.	 Full CPU bypass: For certain, more-specialized applications, RDMA hardware can allow
one computer to read and write directly to/from the memory of another node in the cluster,
without the remote node’s CPU or OS being involved at all.

RDMA has been a key ingredient of HPC and supercomputing environments for years, but it
is also intriguing to datacenter application developers. RDMA hardware presents program­
mers with numerous choices, so using it efficiently requires care. For example, should applica­
tions provide reliability, or should the NIC’s reliability protocol be used? In the rest of this
article, we help readers navigate this space to understand what RDMA capabilities might be
the best match for their application. Our open-source rdma_bench toolkit (https://github.com
/efficient/rdma_bench) can be used for evaluating and optimizing the most important sys­
tem factors that affect end-to-end throughput when using RDMA.

RDMA Background
RDMA is a general approach to networking for which several different models exist. The
most popular model is the Virtual Interface Architecture (VIA) [3]. Other models include
open-source specifications such as Portals from Sandia Labs, and proprietary HPC archi­
tectures such as Fujitsu’s Tofu interconnect. For a given model, there can be more than one
implementation. For example, VIA has three well-known implementations: InfiniBand,
RoCE (RDMA over Converged Ethernet), and iWARP (Internet Wider Area RDMA Proto­

Anuj Kalia is a PhD student
in the Computer Science
Department at Carnegie Mellon
University. He is interested in
networked systems, especially

using high-speed networks to build distributed
systems. akalia@cs.cmu.edu

Michael Kaminsky is a Senior
Research Scientist at Intel
Labs and an adjunct faculty
member of the Computer
Science Department at

Carnegie Mellon University. He is part of the
Intel Science and Technology Center for Cloud
Computing (ISTC-CC), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

David G. Andersen is
an Associate Professor
of Computer Science at
Carnegie Mellon University.
He completed his SM and

PhD degrees at MIT, and holds BS degrees
in biology and computer science from the
University of Utah. In 1995, he co-founded
ArosNet, an ISP in Salt Lake City, Utah.
dga@cs.cmu.edu

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  39

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

col). Our work focuses on VIA-based NICs, which are the only
commodity NICs currently available. Several observations
are applicable to other architectures as well. Table 1 shows an
abstract RDMA API for VIA NICs.

Compared to conventional Ethernet-based TCP/IP network­
ing, RDMA networks remove several sources of CPU overhead.
They support user-level NIC access, removing the overhead of
the kernel’s heavyweight networking stack. At the remote host,
RDMA reads and writes bypass the CPU. RDMA NICs typi­
cally implement a reliable transport layer, freeing up host CPU
cycles used for implementing a reliable protocol such as TCP/IP.
RDMA-capable networks with 100 Gbps of per-port bandwidth,
and 2 μs round-trip latency are commercially available.

Figure 1 shows the relevant hardware components of a machine
in a modern RDMA cluster. A NIC with one or more ports con­
nects to the PCIe controller of a multicore CPU, and provides
direct access to the memory of remote nodes.

Verb types: One-sided verbs (RDMA operations) operate
directly on a remote node’s memory, bypassing its CPU, and
include RDMA reads, writes, and atomic operations. Two-sided
verbs include the send and receive verbs; their functionality
resembles send() and recv() functions in traditional sockets
programming. These verbs involve the responder’s CPU: the
send’s payload is written to an address specified by a receive that
was posted previously by the responder’s CPU.

The choice of verbs is a key determinant of application perfor­
mance, but it is not the only factor. The choice of transport and the
verb initiation method (discussed below) require equal attention.

Queue pairs: RDMA hosts communicate by posting verbs
to interfaces called queue pairs (QPs). On completing a verb,
the requester’s NIC optionally signals completion by writing
a completion queue entry to host memory via direct memory
access (DMA).

RDMA transports are either reliable or unreliable and are
either connected or unconnected (also called datagram). With
reliable transports, the NIC uses acknowledgments to guarantee
in-order delivery of messages. Unreliable transports do not pro­
vide this guarantee. However, modern high-speed networks such
as InfiniBand and RoCE use a reliable link layer, so unreliable
transports do not lose packets due to congestion or bit errors.
Connected transports require one-to-one connections between
QPs, whereas a datagram QP can communicate with multiple
QPs. Datagram transport is more scalable, but it only supports
two-sided verbs.

Current RDMA transports include Reliable Connected (RC),
Unreliable Connected (UC), and Unreliable Datagram (UD).
Note that although these transports resemble non-RDMA trans­
port layers to some extent (e.g., RC and UD are analogous to TCP
and UDP, respectively), the underlying protocol and message
formats are different.

Verb initiation: To initiate RDMA operations, the user-mode
NIC driver at the requester creates work queue elements
(WQEs) in host memory. These WQEs are transferred to the
NIC over the PCIe bus in one of two ways. In the “WQE-by-
MMIO” method, the CPU directly writes the WQEs to device
memory using memory-mapped I/O (MMIO). In the “Doorbell”
method, the CPU writes a short Doorbell message to the NIC,
indicating the new WQEs. This action is called “ringing the
Doorbell.” On receiving the Doorbell, the NIC reads the WQEs
from the CPU via a DMA read. Both methods bypass the host’s
OS kernel. Figure 2 summarizes the two methods. The Doorbell
method reduces CPU use: it requires one MMIO for a batch of
WQEs, whereas WQE-by-MMIO requires separate MMIOs for
each WQE.

Factors Affecting RDMA System Performance
In datacenters, RDMA is being proposed for use in key-value
stores, graph processing systems, and online transaction pro­
cessing systems [1, 2]. These applications access irregular data
structures (e.g., hash tables and trees) and use small packet sizes
on the order of tens of bytes. Three main factors are important
for high performance with these workloads: the extent to which
remote CPU bypass is used, low-level optimizations for verbs,
and the NIC architecture.

Figure 2: The WQE-by-MMIO and Doorbell methods for transferring two
WQEs. Arrows represent PCIe transactions. Solid arrows are PCIe MMIO
writes; the dashed arrow is a PCIe DMA read. Arrow width represents
transaction size.Verb Abstract API function call

WRITE
READ

write(qp, local_buf, size, remote_addr)
 read(qp, local_buf, size, remote_addr)

SEND
RECV

 send(qp, local_buf, size)
 recv (qp, local_buf, size)

Table 1: Abstract RDMA API showing one-sided (WRITE, READ) and
two-sided (SEND, RECV) verbs

Figure 1: Hardware components of a node in an RDMA cluster

40    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

Remote CPU Bypass
In an RDMA-based datastore, data is stored in the memory of
a server machine and is accessed by client machines. To take
advantage of RDMA’s ability to bypass the remote CPU, several
projects use one-sided READs and WRITEs to accomplish
this. For datastore GET operations, they do so by traversing the
remote data structure using READs. This typically requires
multiple round trips. For example, Pilaf [6] is an RDMA-based
key-value store that handles key-value GET operations in 2.6
READs on average. It uses 1.6 READs to access its hash table–
based index to locate the value’s address, and one READ to fetch
the value. FaRM’s key-value store [1] reduces the number of
READs required for the index from 1.6 to 1.

In contrast, the design of our HERD system [4] is focused on reduc­
ing the number of round trips to one. To accomplish this, HERD
does not entirely bypass the remote CPU. Instead of traversing the
remote data structure, HERD clients send their requests to the
server using an RPC request. The HERD server traverses the data
structure for the client, but it does so in local memory.

Local memory accesses are 10x–100x faster than remote
accesses in latency, bandwidth, and the amount of host CPU they
consume. Then the server sends a response to the client. Several
combinations of verbs and transports can be used to implement
fast RPCs; HERD uses a combination of one-sided and two-sided
verbs over unreliable transport, which is optimized for high per­
formance and number-of-clients scalability. Figure 3 shows the
difference in HERD and READ-based key-value stores.

HERD’s RPC mechanism is very fast: its throughput and latency
is similar to RDMA reads. As a result, HERD delivers higher
throughput and lower latency than Pilaf or FaRM’s key-value
store. Key to achieving high RPC throughput is the use of the
low-level optimizations discussed below. An important lesson
from HERD is that one-sided RDMA is not always the best solu­
tion; using an RDMA network simply for fast, OS kernel–bypass
RPCs is an equally important design to consider.

Low-Level Verb Optimizations
RDMA verbs allow for a variety of low-level optimizations.
Effectively using these optimizations requires a good under­
standing of how different verbs use the CPU, the PCIe bus, and
the RDMA network, and how this varies when different optimi­
zations are enabled. Our USENIX ATC paper [5] addresses this
topic thoroughly. We discuss the most important optimizations
briefly here.

Unreliable transports reduce NIC overhead by not requiring
RDMA acknowledgment packets, and provide higher perfor­
mance than reliable transports. Unreliable transports do not
provide reliable packet delivery. However, modern RDMA imple­
mentations such as InfiniBand use a reliable link layer, so even
unreliable transports drop packets extremely rarely.

Payload inlining reduces NIC processing and PCIe bandwidth
use by eliminating the DMA read for the payload. By default,
WRITEs and SEND work queue elements contain a pointer to
the payload; the NIC reads it via a DMA read. Small payloads up
to a few hundred bytes can be encapsulated inside the WQE and
written to the NIC using MMIO.

Selective signaling also reduces NIC processing and PCIe
bandwidth use by eliminating the completion DMA. By default,
the NIC writes a completion queue entry to host memory on
completing a verb. If an application can detect completion using
alternate methods (e.g., using a future response from a remote
node), it can mark the verb as “unsignaled,” instructing the NIC
to not issue the completion DMA.

Doorbell batching reduces CPU use and PCIe bandwidth use by
allowing applications to issue a batch of RDMA operations using
one Doorbell. This reduces CPU use by requiring only one MMIO
per batch. The default approach of transferring WQEs one by one
using WQE-by-MMIO requires separate MMIOs for each WQE.

Figure 4a and Figure 4b show the PCIe and RDMA network
messages for one WRITE without optimizations, and two
WRITEs with the above optimizations, respectively.

NIC Architecture
Modern high-speed NICs are composed of multiple process­
ing units (PUs), such as packet processing engines and DMA
engines. Exploiting parallelism among the NIC’s PUs is nec­
essary for high performance but requires explicit attention.
Further, RDMA verbs and workloads that introduce contention
between the PUs should be avoided.

Engage multiple NIC PUs: A common RDMA programming
decision is to use as few queue pairs as possible, but doing so
limits NIC parallelism to the number of QPs. This is because
operations on the same QP have ordering dependencies and are
ideally handled by the same NIC processing unit to avoid cross-

Figure 3: Messages for a GET operation in (a) a READ-based key-value
store and (b) HERD

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  41

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

PU synchronization. For example, in datagram-based RDMA
communication, one QP per CPU core is sufficient for commu­
nication with all remote cores. However, it “binds” a CPU core
to a PU and may limit core throughput to PU throughput. This
is likely to happen when per-message application processing is
small and a high-speed CPU core overwhelms a less powerful
PU. In such cases, using multiple QPs per core increases CPU
efficiency; we call this the multi-queue optimization.

Avoid contention among NIC PUs: RDMA operations that
require cross-QP synchronization introduce contention among
PUs, and can perform over an order of magnitude worse than
uncontended operations. For example, RDMA provides atomic
operations such as compare-and-swap and fetch-and-add on
remote memory. To our knowledge, all commodity NICs avail­
able at the time of writing use internal concurrency control for
atomics: PUs acquire an internal lock for the target address and
issue read-modify-write over PCIe. Therefore, the NIC’s internal
locking mechanism, such as the number of locks and the map­
ping of atomic addresses to these locks, is important. Note that
due to the limited SRAM in NICs, the number of available locks
is small, which amplifies contention in the workload.

Case Studies
We now describe the design of two high-performance RDMA-
based systems: the HERD key-value store and the X-Seq
sequencer. X-Seq is named Spec-S0 in our USENIX ATC paper [5].

RPC Overview
For both systems, we use an RPC protocol for communication
between clients and the key-value/sequencer server. In HERD,
clients use unreliable WRITEs to write requests to a request
memory region at the server. A server thread (a worker) checks
for new requests from every client by polling on the request
memory region, and collects a batch of requests. It computes a
batch of responses, and sends them to clients using the SEND

verb over datagram transport. The worker uses a batched Door­
bell for the batch of response SENDs. To use the multi-queue
optimization, each worker alternates among a configurable
number (1–3) of datagram QPs across batches of response SENDs.
In addition to unreliable transport, Doorbell batching, and
multi-queue, the server also uses payload inlining and selective
signaling.

Key-Value Stores
Figure 5 shows the throughput of a HERD key-value store server
with an increasing number of server CPU cores. We use a cluster
with Mellanox Connect-IB InfiniBand NICs, and 14-core Intel
CPUs. The key-value store maps 16-byte keys to 32-byte values;
the workload consists of keys chosen uniformly at random and
5% PUT operations. HERD’s single-core throughput is 12.3 mil­
lion operations/s (Mops), and its peak throughput is 98.3 Mops.
At its peak, HERD is bottlenecked by PCIe bandwidth.

Figure 5 also compares HERD to a READ-based key-value store
that requires two RDMA reads per GET operation. The Connect-
IB NIC supports up to 120 million READs/s, so such a READ-based
key-value store is limited to 60 Mops. HERD delivers up to 64%

(a) RDMA and PCIe messages for one RDMA write (b) RDMA and PCIe messages for two WRITEs with optimizations

Figure 4: Effect of optimizations on RDMA and PCIe messages. The optimized WRITEs are unreliable, inlined, unsignaled, and are issued using a batched
Doorbell. The dashed messages are removed in the optimized version; the dotted messages are repurposed.

Figure 5: Throughput of HERD and READ-based key-value stores

42    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

higher throughput, while using a single round trip per operation.
HERD uses significant server CPU resources: it requires at least
seven CPU cores to outperform a READ-based design. However,
HERD uses less client CPU than a READ-based store because it
requires fewer client-initiated data transmissions.

Networked Sequencers
Centralized sequencers are useful building blocks for a variety of
network applications, such as ordering operations in distributed
systems via logical or real timestamps. A centralized sequencer
can be the bottleneck in high-performance distributed systems,
so building a fast sequencer is an important step to improving
whole-system performance.

Our X-Seq sequence server runs on a single machine and
provides an increasing eight-byte integer to client processes
running on remote machines. The worker threads at the server
share an eight-byte counter. After collecting a batch of N client
requests, a worker thread atomically increments the shared
counter by N, thereby claiming ownership of a sequence of N
consecutive integers. It then sends these N integers to the clients
using a batched Doorbell (one integer per client).

Directly adapting HERD’s RPC protocol to a sequencer provides
good performance. However, even higher throughput and scal­
ability can be achieved by optimizing the RPCs specifically for
the sequencer. The key insight is that the request and response
packets in the sequencer are small, with up to eight bytes of
data. This allows RPC optimizations that reduce the number of
cache lines used by WQEs, and DMAs issued, by 50%. We also
use a speculation technique where the clients speculate the most
significant bytes of the current sequencer number.

Figure 6 shows the throughput of X-Seq with increasing server
CPU cores. Its single-core throughput is 16.5 Mops, and its peak
throughput is 122 Mops. Figure 6 also shows the throughput of
a sequencer where clients use the atomic fetch-and-add verb to
increment an eight-byte counter in the server’s memory. This
sequencer achieves only 2.24 Mops.

The poor performance of the atomics-based sequencer is
because of lock contention among the NIC’s processing units.
The effects of contention are exacerbated by the duration for
which locks are held—several hundred nanoseconds for PCIe
round trips. Our RPC-based sequencers have lower contention
and shorter lock duration: the programmability of general-
purpose CPUs allows us to batch updates to the counter, which
reduces cache line contention, and proximity to the counter’s
storage (i.e., core caches) makes these updates fast.

Code release: The code for our low-level RDMA benchmarks,
HERD, and X-Seq is available at https://github.com/efficient
/rdma_bench.

References
[1] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro,
“FaRM: Fast Remote Memory,” in Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’14), 2014.

[2] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Ren­
zelmann, A. Shamis, A. Badam, and M. Castro, “No Com­
promises: Distributed Transactions with Consistency,
Availability, and Performance,” in Proceedings of the 25th
ACM Symposium on Operating Systems Principles (SOSP ’15),
2015.

[3] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.
Shubert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd, “The
Virtual Interface Architecture,” IEEE Micro, 1998, pp. 66–76.

[4] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
Efficiently for Key-Value Services,” in Proceedings of ACM
SIGCOMM, 2014, pp. 295–306.

[5] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design Guide­
lines for High-Performance RDMA Systems,” in Proceedings
of the 2016 USENIX Annual Technical Conference (ATC ’16).

[6] C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store,” in
Proceedings of the 2013 USENIX Annual Technical Conference
(ATC ’13).

Figure 6: Throughput of X-Seq and atomics-based sequencers

It’s time for the security community to take a step back and get a fresh perspective on threat

assessment and attacks. This is why in 2016 the USENIX Association launched Enigma,

a new security conference geared towards those working in both industry and research.

Enigma will return in 2017 to keep pushing the community forward.

Expect three full days of high-quality speakers, content, and engagement

for which USENIX events are known.

JAN 30–FEB 1 2017
OA K L A ND, C A LIF OR NI A , USA

enigma.usenix.org
The full program and registration will be available in October.

MORE TO DECIPHER

