
www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  73

COLUMNS

Practical Perl Tools
Seek Wise Consul

D A V I D N . B L A N K - E D E L M A N

A s we build infrastructure that is more and more fluid, the idea of
“service discovery” becomes more and more important. Once upon
a time, service discovery was trivial. If you wanted to figure out

where a particular service resided so you could tell some other thing in your
environment how to talk to it, you could walk over to a machine in one of your
racks of equipment, read the labels, and point at it. It likely had a fixed IP
address in addition to a fixed physical address.

Those halcyon days (which I’m not sure even I am pining for) are almost gone. With the onset
of one or any of a list of factors like virtualization, containerization and “cloudy” provision­
ing, components in a system and the people running them have a much more difficult time
locating each other on the fly. There are a number of different good approaches/tools for
this problem. Today we are going to look at the open source package Consul from HashiCorp
(https://www.consul.io/—you’ve probably heard of them because they are the makers of
Vagrant) and how to interact with it via Perl. If this topic is popular, I’m happy to look at some
of the other choices in a future column.

Basic Consul Concepts
The heart of most of these solutions is some sort of distributed/highly available key-value
store that provides easy methods for your other infrastructure components to query/inter­
act with it. “Distributed/highly available” in this case means that the package makes it easy
to run multiple servers that replicate data between themselves so that if one goes down,
your infrastructure continues to hum along. This requires handling all of the gnarly details
around this sort of setup (what to do when one goes down and comes back up again with stale
data, how to handle network partitions, where are writes handled in the system, deciding on
the fly which instance should be “master” and which should be replicas, etc.). The “key-value
store” part of the first sentence is not much more complicated than the key-value concept
of a Perl hash, so we should feel right at home when we get to working with that portion of
Consul.

In practice what this means is that you run a number of Consul servers and Consul agents.
The servers are, well, servers. The agents run on or with every service you wish to make dis­
coverable. Their job is to report in to the servers. They do a little bit more than just register
their respective service (which you can do with the Perl modules we’re going to be discuss­
ing). They can perform health checks on your service and register/deregister it from Consul
as appropriate when it becomes operational or sick. They also provide query forwarding so
Consul queries can be made of both the servers or the agents (who will automatically forward
to an appropriate server). These queries can either be via HTTP, or, to make things really
easy, via DNS. If you haven’t seen this sort of pure magic before, it entails just having the
thing that wants to find that service make a DNS query for the right host name (as in
{servicename}.service.consul). Super spiffy.

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’.  dnblankedelman@gmail.com

74    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools: Seek Wise Consul

(Not So) Secret Agent Man
As much as I want to dive directly into the Perl part of all of
this, I think it will help if we first start out interacting with the
system using the built-in agent functionality before we bring
in Perl as an external actor. And while I’m making caveats, I’m
not really going to demonstrate any of the functionality around
health checks or clustering because it basically just works as the
doc suggests and is almost orthogonal to the later discussions
around Perl. I’m also not going to discuss installation issues—
they are covered in the excellent doc at https://www.consul.io/.

So let’s look at perhaps the simplest example of using Consul
with a single agent (that will also act as a server). This example
comes only slightly modified from the Getting Started documen­
tation. There are two ways to tell a Consul agent about a service
that it should advertise: through a config file or via the API. Let’s
do it both ways.

For a config file, we just need to drop in place a tiny JSON file
that looks like this:

{

 “service”: {

 “name”: “webserver”

 “port”: 80

 }

}

and start up the agent in “dev” mode:

consul agent -dev -config-dir ./config.d

The agent spins up, loads the config, decides it should become a
lead server, and is ready to answer requests (I’m leaving all of the
output from the somewhat chatty dev mode in place just because
I think the election stuff looks cool):

==> Starting Consul agent...

==> Starting Consul agent RPC...

==> Consul agent running!

 Node name: ‘dNb-MBP.local’

 Datacenter: ‘dc1’

 Server: true (bootstrap: false)

 Client Addr: 127.0.0.1 (HTTP: 8500, HTTPS: -1,

		 DNS: 8600, RPC: 8400)

 Cluster Addr: 172.27.4.103 (LAN: 8301, WAN: 8302)

 Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false

 Atlas: <disabled>

==> Log data will now stream in as it occurs:

 2016/06/29 17:32:29 [INFO] raft: Node at 172.27.4.103:8300

 [Follower] entering Follower state

 2016/06/29 17:32:29 [INFO] serf: EventMemberJoin:

dNb-MBP.local 172.27.4.103

 2016/06/29 17:32:29 [INFO] serf: EventMemberJoin:

dNb-MBP.local.dc1 172.27.4.103

 2016/06/29 17:32:29 [INFO] consul: adding WAN server

dNb-MBP.local.dc1 (Addr: 172.27.4.103:8300) (DC: dc1)

 2016/06/29 17:32:29 [INFO] consul: adding LAN server

dNb-MBP.local (Addr: 172.27.4.103:8300) (DC: dc1)

 2016/06/29 17:32:29 [ERR] agent: failed to sync remote

state: No cluster leader

 2016/06/29 17:32:31 [WARN] raft: Heartbeat timeout

reached, starting election

 2016/06/29 17:32:31 [INFO] raft: Node at

172.27.4.103:8300 [Candidate] entering Candidate state

 2016/06/29 17:32:31 [DEBUG] raft: Votes needed: 1

 2016/06/29 17:32:31 [DEBUG] raft: Vote granted from

172.27.4.103:8300. Tally: 1

 2016/06/29 17:32:31 [INFO] raft: Election won. Tally: 1

 2016/06/29 17:32:31 [INFO] raft: Node at 172.27.4.103:8300

[Leader] entering Leader state

 2016/06/29 17:32:31 [INFO] raft: Disabling

EnableSingleNode (bootstrap)

 2016/06/29 17:32:31 [INFO] consul: cluster leadership

acquired 2016/06/29 17:32:31 [DEBUG] raft: Node

172.27.4.103:8300 updated peer set (2): [172.27.4.103:8300]

 2016/06/29 17:32:31 [DEBUG] consul: reset tombstone

GC to index 2

 2016/06/29 17:32:31 [INFO] consul: New leader elected:

dNb-MBP.local

 2016/06/29 17:32:31 [INFO] consul: member ‘dNb-MBP.local’

joined, marking health alive

 2016/06/29 17:32:32 [INFO] agent: Synced service ‘consul’

 2016/06/29 17:32:32 [INFO] agent: Synced service

‘webserver’

We can then query it either via DNS:

$ dig @127.0.0.1 -p 8600 webserver.service.consul

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 webserver.service.

consul

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36403

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0,

ADDITIONAL: 0

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;webserver.service.consul.	 IN	 A

;; ANSWER SECTION:

webserver.service.consul. 0	IN	 A	 172.27.4.103

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  75

COLUMNS
Practical Perl Tools: Seek Wise Consul

or via a call to the API:

$ curl -s http://localhost:8500/v1/catalog/service/

webserver|jq -M

[

 {

 “Node”: “dNb-MBP.local”,

 “Address”: “172.27.4.103”,

 “ServiceID”: “webserver”,

 “ServiceName”: “webserver”,

 “ServiceAddress”: “”,

 “ServicePort”: 80,

 “ServiceEnableTagOverride”: false,

 “CreateIndex”: 5,

 “ModifyIndex”: 5

 }

]

We can also register a service via the API:

$ curl -X POST -d @newservice.json http://localhost:8500/v1/

agent/service/register --header “Content-Type:application/json”

This does an HTTP POST of the JSON file with this content:

{

 “ID”: “webconsole”,

 “Name”: “webconsole”,

 “Port”: 8080

}

And now we can see it in a query (output excerpted):

$ dig @127.0.0.1 -p 8600 webconsole.service.consul

‘ ;; ANSWER SECTION:

webconsole.service.consul. 0	 IN	 A	 172.27.4.103

Key-Value Time
In addition to just being able to register and query service
records, Consul also offers the more general key-value store
functionality à la etcd or zookeeper. HTTP API calls can be
made to store/retrieve a value under a certain key. This is useful
if you want to also store some configuration info in Consul. A
component can come up, check in with Consul, and get not only
pointers to the services it might need but also its configuration
values. Consul’s key-value support is more sophisticated than
what Perl’s hashes offer, so perhaps the analogy earlier was a
little simplistic. In addition to the usual GET/SET operations,
it offers transactions (multiple operations at once that either
succeed or fail all together), locks, test-before-set and watch for
changes functionality.

Simple work with keys just involves PUT or GET operations to
the /v1/kv/<key> endpoint. We could do this via curl commands
(similar to exactly what we did before), but better yet, let’s use
this as an excuse to get into the land of Perl.

Perl Meet Consul
One of the purposes of showing all of these command lines is
to demonstrate the ease of interacting with the system. Trans­
lating these operations directly to an equivalent generic Perl
module would be easy:

◆◆ curl calls easily become HTTP::Tiny (or whatever the HTTP
module of choice is for you) calls.

◆◆ DNS queries are easily done via Net::DNS. The only tricky thing
here would be to make sure you specify either the port option
to Net::DNS::Resolver->new() or be sure to set the port via the
port() method to the port that Consul is using.

We’ve used this stuff time and time again in the past, so instead
let’s take a quick look at the more customized modules for Con­
sul. The two I’m aware of are “Consul” and “Consul::Simple.”
The one thing Consul::Simple has that I think is kind of neat
(and possible to easily implement while using the other module)
is the ability to set a prefix for key-value operations. As the doc
says, this essentially gives you “namespaces,” meaning you could
have keys named “namespace/thing” so you could use different
namespaces for different kinds of keys (e.g., “dev/something,”
“prod/something,” etc.). Unfortunately, Consul::Simple hasn’t
been touched in a couple of years, so I’m going to focus on the
module just called “Consul.”

You’ll be pleased and I suspect unsurprised to know that using
this module looks just like the previous command line operations
only simpler. Here’s how we might set and retrieve key/values:

use Consul;

talk to localhost by default

my $consul = Consul->kv;

set some values

my $status;

$status = $consul->put(‘lisa2016’ => ‘boston’);

die “1st put failed” unless defined $status;

$consul->put(‘sreconEU2016’ => ‘dublin’);

die “2nd put failed” unless defined $status;

retrieve them

my $response = $consul->get(‘lisa2016’);

print ‘LISA is in ‘ . $response->value . “ in 2016\n”;

$response = $consul->get(‘sreconEU2016’);

print ‘SREconEU is in ‘ . $response->value . “ in 2016\n”;

let’s try the namespaces idea

$status = $consul->put(‘conferences/2017/lisa2017’

 => ‘san francisco’);

$status = $consul->put(‘conferences/2017/srecon2017’

 => ‘san francisco’);

76    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools: Seek Wise Consul

returns all of the matching keys

my $pairs = $consul->get_all(‘conferences/2017’);

foreach my $pair (@$pairs) {

 print $pair->key, “\n”;

}

I’m hoping that the code above is fairly self-explanatory. We no
longer have to worry about HTTP endpoints; the module is tak­
ing care of all that for us. The other endpoints in the API are also
equally available should we want to register or retrieve services,
or receive or change internal Consul configuration (for example,
around clustering).

I’d encourage you to play with Consul and all it can do. Take care,
and I’ll see you next time.

