
www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  85

COLUMNS

/dev/random
Distributed Illogic

R O B E R T G . F E R R E L L

A s a teen I bought my first car (a ’69 Chevy Impala Custom, in the
trunk of which you could park most of today’s models with room to
spare) using money I’d saved from various jobs after school and on

weekends. The engine was a small block 350 without any fancy electronics,
emissions control devices apart from an exhaust manifold, or fuel injection
mumbo-jumbo. I knew how it worked, how to do routine maintenance and
simple repairs, and where everything was in the engine compartment. I
could replace/gap spark plugs, change the oil, filters, and distributor cap,
adjust the timing, play with the carb mixture, and so on. It was a straight­
forward, reliable vehicle, even if it did lack certain optional luxuries like
functional motor mounts.

When I open the hood of my 2001 Trans Am (yeah, I still drive that wonderful dinosaur,
when I drive at all), even after 15 years of ownership I’m frankly at a loss to understand any
more than half of what I see in there. I’m lucky if I can find the oil dipstick, to be brutally
honest. So much has changed in the world of automotive technology since 1974. I plug in my
diagnostic computer readout thingamajig whenever I get a warning light on the dashboard,
but I don’t have any idea what the messages it displays are talking about most of the time. I
just shrug and hit “erase all.”

Technology in virtually every area has advanced significantly, of course. Take distributed
computing, for example. It wasn’t that long ago that the suggestion that bits and pieces of not
only our data but the very software and hardware that process it would be scattered hither
and yon across the Internet like propaganda leaflets dropped from a vintage South Korean
Piper Cub would have been met with ridicule or at least eye rolls and head-shaking.

I figure if we’re going to continue down the distributed everything road, we may as well take
it to the next level and distribute the electricity that runs these machines while we’re at it.
So let’s say I need 30 amps at 110 volts to run a server rack that’s processing on the cloud. In
the old system, I would simply plug into a UPS that then was fed by a circuit from the local
electrical utility (in most cases). How quaint. In my sleek, modern power supply engineering
paradigm, nodes all over the planet advertise the number of electrons they have sitting
around unused at the moment and send them wherever they’re needed on request.

At any given moment, then, you might be powering your cloud server with juice from Monte­
video, Edmonton, Aberdeen, Zagreb, Taipei, Jakarta, and Perth. I’m not certain, but that
could require some conversion from European or Asian volts to North American volts. I
think electrons might travel on the other side of the wire in most of those countries, too, but
we can work with that.

As an adjunct to the distributed computing trend, I propose we stop calling it the “Internet”
and adopt “Omninet.” It has a more inclusive ring, don’t you think? With the term Omninet
you don’t need to make cumbersome distinctions like “the Internet of Things” because

Robert G. Ferrell is an award
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

rgferrell@gmail.com

86    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
/dev/random: Distributed Illogic

Omninet pretty much covers all that ground by default. It also
has a sort of Orwellian the government is watching you feel to
it that should prove popular amongst certain elements of today’s
(justifiably) paranoid society.

Maybe it is also time we consider taking our distributed physical
architecture to its logical extreme. Why stop at the board level
when you can drill on down to individual components? We can
assemble the necessary circuits on the fly from a database of
hundreds of thousands or even millions of resistors, capacitors,
diodes, integrated circuits, and so on available worldwide using
the new generation of just-in-time hardware compilers I recently
made up. That way the only piece of processing hardware you
actually need on premises is the compiler itself. Everything else
can be recruited from the Omninet in real time. Maybe we could
even figure out a way to assemble the compiler on the fly. Closed
loops are so entertaining.

Having a ten thousand-mile-long electrical bus might seem
a little ponderous, but think of the local thermal advantages,
not to mention the savings from not needing to buy equipment
that becomes obsolete before you can get it installed and
configured. Heck, I see significant advantages even for home
users, especially gamers. One of the reasons I finally gave up on
PCs and went to console gaming exclusively some years ago is
that I got tired of having to upgrade my video card for every new
astronomical-polygon count game release. Sixty bucks for the
game and another three hundred for the hardware to run it puts
a real dentaroo in the ol’ household budget, know what I mean? I
have a cabinet drawer that could supply the nucleus of a decent
graphics card museum.

If the game itself could actually specify its minimum hardware
requirements for running and recruit the necessary components
from the Omninet, that would be just super. Sure, a few itty-
bitty latency issues might crop up at first, but I’m certain they’ll
be overcome. After all, we can stream 4K cat videos to corners
of the planet where indoor plumbing is considered a novelty.
All a gamer would need is a monitor, an Omninet connection,
and whatever interface was necessary to make the distributed
components work together.

Of course, some might argue, why bother with on-premises
hardware at all? Just use a sort of distributed Steam-like system
where each player forks a new instantiation of both the game
and platform. Simplifies multiplayer quite a bit. We might take
clipping to new heights, as well: instead of merely hiding the
parts of a rendered scene not currently visible to the player, don’t
even write the code until the predictive engine determines it will
be required soon. Who needs human programmers these days,
anyway? Am I right? Step away from the pitchfork, meatbag.

If I’ve said all this before, I’m not surprised. Three days is about
the maximum I can go without repeating myself at dinner table
conversation with my wife; I’ve been writing this column now for
over ten years. You’re lucky I don’t just select random paragraphs
from previous columns and string them together. I called it “/dev
/random” for a reason, you know.

Um, actually, that’s not a bad idea. Reusable code is all the rage,
after all. Maybe I can put every paragraph I’ve ever written into
a database and let you mash them up yourselves: sort of a literary
mix tape. This sort of betrayal only hurts if you let it.

16 12th USENIX Symposium
on Operating Systems Design
and Implementation
Sponsored by USENIX in cooperation
with ACM SIGOPS

November 2–4, 2016 • Savannah, GA

Join us in Savannah, GA, November 2–4, 2016, for the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’16). The Symposium brings together professionals

from academic and industrial backgrounds in what has become a premier forum for discussing

the design, implementation, and implications of systems software.

Co-located with OSDI ’16 on Tuesday, November 1:

• INFLOW ’16: 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads

Register Now!

www.usenix.org/osdi16

The full program and registration are now available.

Register by Friday, October 7, and save!

