
12    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

CLOUD

Linux Containers for Fun and Profit in HPC
R E I D P R I E D H O R S K Y A N D T I M R A N D L E S

This article outlines options for user-defined software stacks from
an HPC perspective. We argue that a lightweight approach based on
Linux containers is most suitable for HPC centers because it provides

the best balance between maximizing service of user needs and minimizing
risks. We discuss how containers work and several implementations, includ-
ing Charliecloud, our own open-source solution developed at Los Alamos.

Innovating Faster in HPC
Users of high performance computing resources have always been asking for more, better,
and different software environments to support their scientific codes. We’ve identified four
reasons why:

◆◆ Software dependencies not provided by the center. Examples include libraries that are
numerous, unusual, or simply newer or older; configuration incompatibilities; and build-
time resources such as Internet access.

◆◆ Portability of environments between resources. For example, it is helpful to have the same
environment across development and testing workstations, local compute servers for small
production runs, and HPC resources for large runs.

◆◆ Consistency of environments to promote reproducibility. Examples include validated
software stacks standardized by a field of inquiry and archival environments that remain
consistent into the future.

◆◆ Usability and comprehensibility for meeting the above.

These needs for flexibility have been traditionally addressed by sysadmins installing various
software upon user request; users can then choose what they want with commands such as
module load. However, only software with high demand justifies the sysadmin effort for
installation and maintenance. Thus, more unusual needs go unmet, whether innovative or
crackpot—and it’s hard to tell which is which beforehand. This can create a chicken-and-egg
problem: a package has low demand because it’s unavailable, and it’s unavailable because it
has low demand.

This motivates empowerment of users with “bring your own software stack” functionality,
which we call user-defined software stacks (UDSS). The basic notion is to let users install
software of their choice, up to and including a complete Linux distribution, and run it on
HPC resources.

Of course, this approach has drawbacks as well. We’ve identified three potential pitfalls:

◆◆ Security: By introducing very flexible new features, UDSS can expand a center’s attack
surface, especially if they depend on privileged or trusted functionality.

◆◆ Missing functionality: Separation from the native software stack can interfere with
features such as file systems, accelerator hardware, and high-speed interconnects that make
HPC centers interesting and special.

◆◆ Performance: Implementations must take care to avoid introducing overhead that mean-
ingfully impacts performance.

Reid Priedhorsky is a Staff
Scientist at Los Alamos
National Laboratory. Prior
to Los Alamos, he was a
Research Staff member at IBM

Research. He holds a PhD in computer science
from the University of Minnesota and a BA,
also in computer science, from Macalester
College. His work focuses on large-scale data
analysis from both systems and applications
perspectives. Recent lines of research include
using social media and Web traffic to monitor
and forecast the spread of disease as well as
developing technology to bring data-intensive
computing and user-defined software stacks to
existing high-performance computing systems.
In his spare time, he enjoys reading, bicycling,
hiking (especially in the mountains and deserts
of the American West), tinkering with things,
photography, and hanging out with his wife and
son. reidpr@lanl.gov

Tim Randles has been working
in scientific, research, and
high-performance computing
for many years, first in the
Department of Physics at the

Ohio State University, then at the Maui High
Performance Computing Center, and most
recently as a member of the HPC Division at
Los Alamos National Laboratory. His current
work is focused on the convergence of the high
performance and cloud computing worlds.
When Tim isn’t working, he enjoys brewing
beer, cheesemaking, taking hikes, and working
on computer games. He lives in Santa Fe with
his wife and three cats. In an ideal world they’d
also have a few goats and some chickens.
trandles@lanl.gov

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  13

CLOUD
Linux Containers for Fun and Profit in HPC

Options for User-Defined Software Stacks
We believe the needs and pitfalls above lead to three design goals
for an HPC-focused UDSS implementation.

First, it should provide a standard and reproducible workflow.
A standard workflow reduces training and development costs
while enhancing the portability of staff skill sets; a reproducible
workflow, in contrast with a “tinker ’til it’s ready, then freeze,”
makes the creation of UDSS images simpler and more robust.

Second, it should run on existing, minimally modified HPC
hardware and software resources. This is for two reasons. First,
the pitfalls above are already well-controlled in HPC centers;
smaller modifications add fewer risks than larger ones. Second,
the challenges of orchestrating large parallel applications are
well-addressed by HPC centers. We have good resource manag-
ers (Slurm, Moab, Torque, PBS, etc.), good high-performance
parallel file systems (Lustre, Panasas), good high-speed net-
works (InfiniBand, OPA), and more. These solutions need not be
reimplemented and reoptimized using novel technology.

Finally, it should be as simple as is practical while still deliver-
ing the necessary features. This is in keeping with the UNIX
philosophy to “make each program do one thing well” [2].

We see three basic options for implementing UDSS: self-compile,
virtual machines, and Linux containers.

Compile It Yourself
The traditional method for users to take care of themselves is
to simply compile what they need in a home directory or other
user area. This is available almost everywhere already, employs
only unprivileged functionality, and yields direct access to all
center resources. However, it is also tedious and error-prone,
hard to update, and does not provide portability or consistency
of environments. In principle, users can self-compile arbitrary
software; in practice, its difficulty is very limiting.

Virtual Machines and Public/Private Cloud
A virtual machine (VM) is a program that emulates a physical
computer. One then installs an operating system and applica-
tions into this emulator. This is appealing because it gives users
ultimate flexibility and strong isolation; it is reasonable to let
them install even non-UNIX operating systems and have full
administrative privileges. Modern virtual machines perform
excellently for things needed by industry, such as CPU-bound
tasks and Ethernet networking.

However, the approach has challenges. Performance is often an
issue for things uncommon in industry, such as HPC high-speed
networks; this can sometimes be mitigated by compromising on
isolation. Virtual machines must be provisioned with a complete
OS, including kernel and system daemons, and the support infra-
structure such as virtual networking is complex.

There is a view that HPC should become more like cloud comput-
ing, which offers on-demand, loosely coupled virtual machines.
However, this approach requires that either users or sysadmins
reimplement and reoptimize much of the functionality that HPC
centers already offer.

Our belief is that HPC centers should offer virtual machines
only if credible UDSS require not only a custom user space but a
custom kernel as well. Otherwise, its disadvantages dominate.

Linux Containers
A middle approach is containers, which share “the only” kernel
with the native software stack, accomplishing isolation with
Linux namespaces and related features. (For further reading, we
recommend Michael Kerrisk’s series in Linux Weekly News [1]as
well as namespaces(7) and related man pages.)

Note that container is a widely used term with varying defini-
tions. The view outlined here is the one we find most sensible.

Privileged Linux Namespaces
Linux has six namespaces that isolate different classes of kernel
resources; processes in one namespace see a different view
of system state than processes in another. Five namespaces
are what we call privileged, needing root to create; the sixth,
unprivileged one, is covered in the next section. The privileged
namespaces are:

1.	 Mount: File-system tree and mounts

2.	 PID: Process IDs—a process in a PID namespace has a differ-
ent PID inside and outside the namespace

3.	 UTS: Host name and domain name (the name deriving from
“UNIX time-sharing system”)

4.	 Network: All other network-related resources, including net-
work devices, ports, routing tables, and firewall rules

5.	 IPC: Inter-process communication, both System V and POSIX

The six namespaces can be mixed and matched, but there are
quirks. For example, a mount namespace cannot create a new /
sys unless it is also a network namespace, because /sys includes
files that can be used to manipulate the network configuration.

Namespaces are always active, i.e., all Linux processes have
namespace IDs for all six namespaces (try ls -l /proc/self/ns).
Namespaces form a tree, with parent/child relationships, and
everything is owned by a namespace. For example, though it
cannot create its own, a mount namespace can bind-mount its
parent’s, to which the parent namespace controls access.

Namespaces are manipulated by three system calls: unshare(2)
puts an existing process into new namespaces, clone(2) can put
a new child process into new namespaces, and setns(2) joins an
existing namespace.

14    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

CLOUD
Linux Containers for Fun and Profit in HPC

These features are useful for UDSS because they allow any
directory to become the file-system root of a mount-namespaced
process, and the other namespaces can be added for additional
isolation as needed.

The Unprivileged User Namespace
The sixth namespace, user, was added starting in Linux 3.8.
Its goal is to give unprivileged processes access to traditionally
privileged functionality in specific contexts when doing so is
safe. This is accomplished with namespace-specific capabilities
and user/group IDs.

The first process in a new user namespace has all capabilities in
the new namespace, but none in the parent user namespace, even
if created by root.

The relationship between child and parent namespace UIDs is
controlled by a one-to-one mapping defined during namespace
setup. The situation with GIDs is analogous. A common use is to
map one’s normal, unprivileged UID to 0 inside the namespace,
thus appearing to be root inside the namespace.

If the namespace is created by an unprivileged user, the parent
side of this map may only be the existing EUID. This limits
access to things already accessible, because while any UID can
be selected in the child namespace, it must map to the user’s
existing, real UID. Also, all access using unmapped UIDs will
be rejected. For example, setuid(2) cannot be used to access
another user’s files, because the other user’s UID grants no access
if unmapped and cannot be set on the parent side of the map.

This one-to-one mapping is used to translate UIDs in both
directions. When a UID-based access decision is initiated inside
the namespace, the map translates the in-container UID up
through the namespace tree to its corresponding base UID, and
the latter is used for access control. For example, bind-mounting
any directory into the container is safe, because it is the user’s
real, unprivileged IDs on the host, not the fictional ones in the
user namespace that control access. In the opposite direction,
for example, files owned by the user will be translated from the
user’s real UID to the in-container UID. Thus, with the mapping
to UID 0 described above, all of a user’s files will appear to be
owned by root when listed inside the namespace.

Thus, processes and kernel resources inside the user namespace
can be manipulated arbitrarily, but only in ways that do not
affect the parent namespace—privilege is an illusion.

 #define _GNU_SOURCE

 #include <fcntl.h>

 #include <sched.h>

 #include <stdio.h>

 #include <sys/types.h>

 #include <unistd.h>

 int main(void)

 {

 uid_t euid = geteuid();

 int fd;

 printf(“outside userns, uid=%d\n”, euid);

 unshare(CLONE_NEWUSER);

 fd = open(“/proc/self/uid_map”, O_WRONLY);

 dprintf(fd, “0 %d 1\n”, euid);

 close(fd);

 printf(“in userns, uid=%d\n”, geteuid());

 execlp(“/bin/bash”, “bash”, NULL);

 }

Listing 1: Hello world implementation of a user namespace, available
as examples/syscalls/userns.c in the Charliecloud source code.
This program creates the namespace with unshare(2), maps within-
namespace UID 0 to the invoking user’s EUID by writing uid_map, and
then starts the world’s most useless root shell.

Listing 1 illustrates a hello-world user namespace implementa-
tion. This is an unprivileged, untrusted, non-setuid program;
given kernel support, any user can run it, or the more complete
implementations in Charliecloud, with no sysadmin assistance.

User namespaces are a powerful tool for implementing container-
based UDSS tools because they let a normal, unprivileged user
create an independent file-system tree and safely access host
resources, even if he or she holds “privileges” inside the container,
without depending on the container implementation for security.

Additional Components
Other Linux features commonly used in container implementa-
tions include:

◆◆ cgroups(7), which track and limit resource consumption of
processes. This can be useful in multi-tenant settings to keep
users from stomping on each other.

◆◆ prctl(2) with PR_SET_NO_NEW_PRIVS, which prevents
execve(2) from increasing privileges. This can protect against
some privilege escalation bugs, e.g., in setuid binaries.

◆◆ seccomp(2) filters system calls, thus mitigating security issues
in the excluded calls.

◆◆ SELinux and AppArmor have various features that can change
what the processes may do.

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  15

CLOUD
Linux Containers for Fun and Profit in HPC

These features can be applied to processes in general, not just
containers. For example, if a seccomp(2) filter increases the
security of container jobs, why not apply it to all jobs? That said,
it may be reasonable for container implementations to use these
tools under a “belt and suspenders” philosophy, if the benefit
outweighs the complexity gain.

Container Implementations
There are many container implementations. We divide them
generally into two categories, full-featured and lightweight,
which serve different use cases.

Full-Featured
Full-featured container implementations have (shockingly!) lots
of features, for example some subset of:

◆◆ Image building
◆◆ Image management (e.g., storage, caching, tagging, signing)
◆◆ Images stored in custom formats
◆◆ Image sharing (repository/registry, search, Web site)
◆◆ Orchestration
◆◆ Storage management (overlay management, back-end drivers)
◆◆ Runtime setup (default command, start-up script, inetd-type

functionality)
◆◆ Stateful containers that can be started and stopped
◆◆ Supervisor daemons, e.g., to proxy signals as required by PID

namespace

Typically, these implementations comprise a security boundary.

Examples from industry include Docker/runC, rkt, and LXC,
along with perhaps systemd-nspawn(1) and NsJail; examples
from HPC include NERSC’s Shifter and LBNL’s Singularity.

These many features are implemented because they are use-
ful, but there are drawbacks. For example, access to the docker
command is equivalent to root by design [4]. One could write
a wrapper, but input sanitization is a perilously difficult problem.

All these features must be supported for configuration, security,
and user support. For example, Docker comprises 133,000 lines
of code, some of which are privileged, and Docker is written in
Go, a language HPC centers tend to lack expertise in.

It can be done, of course, but it’s a major step for an HPC center
and must be done with great care. We believe that deploying a
lightweight solution is an easier path.

Lightweight
In contrast, lightweight implementations have few features. Most
basically, given an image, they run a containerized process within
that image. Typically, image building is delegated to other tools,
whether designed for containers or not (e.g., debootstrap(8)).

Lightweight implementations minimize security responsibil-
ity, and they have fewer lines of code to evaluate, support, and
secure. This makes deployment lower cost and easier for HPC
centers to justify.

Examples from industry include unshare(1) from util-linux,
along with perhaps systemd-nspawn(1) and NsJail. In HPC, we
are aware of only our own Charliecloud, discussed below.

We believe that lightweight implementations are best for HPC
centers. They bring the most important dimensions of cloud-
like flexibility without compromising the existing tools and
strengths of HPC centers or demanding their reimplementation
and reoptimization.

Charliecloud
Our basic design is motivated by two observations. First, full-
featured implementations are not a good fit for HPC centers.
However, some of their features are really important: most
importantly, image building and image sharing.

 $ cd charliecloud/examples/hello

 $ ch-build -t hello ../..

 Sending build context to Docker daemon 12.24 MB

 [...]

 Successfully built 2972e7281f75

 $ ch-docker2tar hello /var/tmp

 57M /var/tmp/hello.tar.gz

 $ ch-tar2dir /var/tmp/hello.tar.gz /var/tmp/hello

 /var/tmp/hello unpacked ok

 $ ch-run /var/tmp/hello -- echo “I’m in a container”

 I’m in a container

Listing 2: Building and running “hello world” in Charliecloud requires only
a few simple commands. The tarball image created in Step 3 can be run on
any host where the Charliecloud runtime is installed; Docker is no longer
needed once the image is built.

Thus, our open-source, lightweight container implementation
takes a dual approach. We put building and sharing in a sandbox
that is separate from HPC center resources. This could be a user
workstation or a virtual machine: somewhere safe to give the
user root. In this sandbox, Charliecloud wraps Docker for image
building, and the other Docker tools are also available, including
sharing via pull/push to any Docker Hub repository.

Running images uses our own runtime that is unprivileged
and independent of Docker. This can be on center resources or
anywhere else with the Charliecloud runtime installed, such as
the same sandbox for development and testing. Listing 2 is an
example of this workflow.

16    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

CLOUD
Linux Containers for Fun and Profit in HPC

This brings us back to our three design goals:

1.	 A standard, reproducible workflow is accomplished by using
Docker for image building. This enables use of Dockerfiles,
an industry standard for reproducible builds. Working atop
Docker for image management also integrates our solution
into the robust Docker image ecosystem.

2.	 Running on existing HPC resources is accomplished with
our ch-run runtime, which provides just enough isolation
using the mount and user namespaces to run a container
image. Similarly to time(1), which provides an environment
that records resource usage, ch-run provides a container
environment.

ch-run requires no privilege and depends on the Linux kernel
for security, just like any other user process. Performance
is the same as native in our tests, modulo noise, because
minimal isolation yields direct access to all resources:
compute, network, file systems, accelerators, and the rest.
ch-run scales using standard HPC tools. For example, a large
application can be started simply with mpirun -np $BIGNUM

ch-run bigprog.

3.	 Simplicity: Charliecloud is a collection of five shell scripts
and two C programs totaling roughly 900 lines of code. For
comparison, NsJail is 4,000 lines, Singularity 11,000, Shifter
19,000, and Docker 133,000.

We have recently deployed Charliecloud in production and are
working with Los Alamos scientists on its use and performance
for real-world science code. We look forward to sharing these
results.

If you’d like to learn more, Charliecloud’s source code is avail-
able from GitHub (https://github.com/hpc/charliecloud), and its
documentation is on the Web (https://hpc.github.io/charliecloud).
Further technical detail is available in our forthcoming Super-
computing paper [3].

References
[1] Michael Kerrisk, “Namespaces in Operation, Part 1:
Namespaces Overview,” Linux Weekly News, January 4, 2013:
https://lwn.net/Articles/531114/.

[2] Doug McIlroy, E. N. Pinson, and B. A. Tague, “UNIX Time-
Sharing System,” Foreword, Bell System Technical Journal,
vol. 67, no. 6, 1978.

[3] Reid Priedhorsky and Tim Randles, “Charliecloud: Unpriv-
ileged Containers for User-Defined Software Stacks in HPC,”
in Supercomputing, 2017 (forthcoming).

[4] Reventlov’s Silly Hacks, “Using the Docker Command
to Root the Host (Totally Not a Security Issue),” April 2015:
http://reventlov.com/advisories/using-the-docker-command​
-to-root-the-host.

https://lwn.net/Articles/531114/
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host

