GLOUD

Interview with James Bottomley

RIK FARROW

James Bottomley is a
Distinguished Engineer at
IBM Research, where he
works on cloud and container

c 7’ technology. He is also a Linux
kernel maintainer of the SCSI subsystem. He
has been a Director on the Board of the Linux
Foundation and Chair of its Technical Advisory
Board. He went to Cambridge University for
both his undergraduate and doctoral degrees
after which he joined AT&T Bell Labs to work
on distributed lock manager technology for
clustering. In 2000 he helped found SteelEye
Technology, a high availability company
for Linux and Windows, becoming Vice
President and CTO. He joined Novell in 2008
as a Distinguished Engineer at SUSE Labs,
Parallels (later Odin) in 2011 as CTO of server
virtualization, and IBM Research in 2016.

james.bottomley@hansenpartnership.com

Rik is the editor of ;login:. rik@

usenix.org

WWWw.usenix.org

first met James Bottomley during a Linux File System and Storage

workshop that took place before FAST in 2007. James’ focus has been

on the SCSI subsystem of Linux. But, as the CTO of Parallels, James has
also worked on containers. James and Pavel Emelyanor wrote an article com-
paring containerization to virtualization for ;login: back in 2014 [1].

While attending LISA ’16, I heard many conversations from people in the hallway that sug-
gested that they understood neither the purpose of containers nor how they were imple-
mented. And, it turns out, I didn’t understand how containers work under Linux either.

Rik Farrow: Looks like you may not be at Parallels anymore.
James Bottomley: That’s right..I'm at IBM Research now.
RF: My problem is that lots of people don’t consider container tech important.

JB: Heh, well, there’s a strong political reason for that: the main contenders vying to be

the enterprise container power have no expertise in the core technology of containers (OS
virtualization), so they’re anxious to concentrate on stuff they can control. Plus if you look
at what industry is after with container technology, development process simplification and
agility, although these are enabled by OS virtualization, they’re nowhere directly connected
to virtualization.

RF: By “main contenders,” you mean Docker, Red Hat, Core, and some others I am not
thinking of?

JB: Yes: other orchestration companies like Mesos, Joyent, and now even VMware.

RF:You include VMware in the list of companies offering orchestration. Could you clear that
up for me?

JB: Yes, VMware’s province is still very much hypervisors and thus hardware virtualization
not OS virtualization. Admittedly, VMware does have a Linux kernel team, which gives them
the capacity to get into the OS virtualization infrastructure in Linux very quickly unlike
most of the other orchestration owners, but there’s little sign (from kernel commit logs) that
they’re doing this.

RF:1think that industry wants what you suggest, simpler development and more agility, but
they also appreciate having containers that are much lighter weight than VMs.

JB: Remember, I worked for Parallels, which was a container company before it was fash-
ionable. In 2004, Parallels tried to sell containers to the enterprise in place of VMs on the
grounds that they were faster and more lightweight. Parallels failed primarily because that’s
not what the enterprise wanted.

Enterprise CIOs have a problem they try to conceal with excess hardware capacity; some-
thing that uses capacity more efficiently is really an unwelcome technology.

;login: FALL 2017 VOL. 42, NO.3 17

GLOUD

Interview with James Bottomley

The first company to have a genuine need for lightweight virtu-

alization technology was Google in around 2006-2007 because

they realized that to run a service at cloud scale you require this
type of transactional efficiency—that’s when they adopted con-

tainers wholesale. Very few traditional enterprises are building
out cloud-scale datacenters still.

RF:T've heard that you can run 10 times as many containers as
VMs on the same hardware. And they can spin up containers
much faster, too.

JB: Yes, that’s because there’s a single kernel doing all the
resource management. Containers are essentially small groups
of UNIX processes, so if you want to run 100 Apache servers, it’s
far cheaper in resources to run 100 Apache processes eachina
container than to run 100 VMs with a full OS complement.

Full operating systems are very complex and resource-intensive
beasts. The person who just wants to run X applications really
doesn’t care what the OS is doing and really doesn’t want to
manage it, which is the Achilles’ heel of VMs. The world wants to
move away from infrastructure, but a VM is anchored there.

RF"1attended a workshop (HotCloud *14), where they broke up
into groups discussing different topics. I attended the Container
group, and one thing some Google person said stuck in my mind:
we run associated containers within a VM, and we use VMs for
security isolation. I thought about that a lot.

JB: Google has a particular problem: being the first adopters,
they bent the technology to serve themselves. Google actually
hired about everyone they could who was working on Linux
cgroups in 2006. The Google datacenters grew to be container-
centric but supported Google written workloads. The Google
cloud allowed you to bring your data but not your code in those
days. If you write all the code, you can take a lot of shortcuts with
security (which Google did).

Then when they wanted to offer a-bring-your-own-code service,
Google App Engine, they had to turn to some external technol-
ogy to add security. This problem is unique to Google. But every
former or current hypervisor company is trying to also smear
container security because they fear it’s the only way they’ll
stay in the game, so you hear this type of statement from a lot of
sources.

The reality is, of course, that containers were being sold as
hypervisor replacements to the hosting industry by Parallels
from about 2001 on. With no need of any VM to provide security.
The technology itself can be made secure enough on bare metal.

The key phrase is “can be made.” The problem with container
technology is that it’s not all or nothing like VM technology. You
can’t really emulate just some virtual hardware, so if you don’t
turn on the OS virtualizations securely, you don’t get security.

18 ;login: FALL 2017 VOL. 42, NO. 3

Most of the modern application packaging container technology,
like Docker, doesn’t turn all the security features on.

RF:Inthe article you and Pavel wrote [1], you explained that con-
tainers are based on cgroups and namespaces. Cgroups (control-
groups) provide limits to resource usage, and namespaces limit
access to, well, namespaces, such as files, directories, devices,
and networks. Is that a good description of how containers work?

JB: Sort of. The problem is that the OS itself has no concept at

all of a “container™ all the OS knows is that there are a group

of processes for which certain OS virtualization features have
been set up. So the way “containers” work is potentially hugely
variable. For instance, the Kubernetes concept of a “pod” means
a set of “containers” that share certain namespaces, like network
or IPC (meaning they see each other’s network interface, and you
can set up IPC message passing between them).

All container systems without exception use the core Linux APIs
of namespaces and cgroups, but they can use them in very differ-
ent ways (so LXC is very different from, say, Docker in how it sets
up what it thinks of as a container).

RF: There must also have been some API support added, so a
root-EUID process could start up containers.

JB: Actually, the largest amount of work in Linux is going on in
the realm of what are called unprivileged containers. This means
OS virtualization that can be controlled by non-root users.

What you say above is currently true—most orchestration sys-
tems do run as root, but that causes security problems, so they’d
actually also be interested in running unprivileged.

RF:T'm guessing that this is involved in orchestration schemes,
but there must be more to orchestration than just firing up con-
tainers. You need a way to keep track of them, as well as methods
for both connecting them as well as constraining them through
the orchestration system.

JB: Right. Usually the way an orchestration system keeps track
of containers to think of each container as being a collection

of processes. Usually the container has some unique ID, and
each process within the container carries it as either a mark or
amapping. Most often the way you can see this from outside is
that each container is a separate PID namespace. So Docker uses
UUIDs, and it keeps a runtime map of UUID<->PID namespace
(which changes every time you start and stop a container) so that
it can uniquely identify every process in a container by interro-
gating the PID namespace.

Now that I've told you the above, I have to confess that when I
set up my architecture emulation containers, I don’t actually use
a PID namespace, so the above isn’t universal (but realistically
nothing in containers is).

Www.usenix.org

GLOUD

RF:Thatreally helped me understand containers: that the
UUIDs that Docker creates is just the Docker tool’s own way
of'identifying a group of processes. I found myself wondering
whether there was a “create container” system call. Instead I
discovered that most of the work is done by clone() by setting
certain flags when creating a new process.

JB: Yes, there are essentially two namespace creation system
calls, clone() and unshare(), and one namespace entry system
call, setns(). Cgroups don’t have any system calls at all; it’s cur-
rently all done by manipulating files in the cgroup file systems,
which are usually mounted under /sys/fs/cgroup.

Interview with James Bottomley

Reference

[1] James Bottomley and Pavel Emelyanov, “Containers,”
slogin: ,vol. 39, no. 5 (October 2014): https://www.usenix.org
/publications/login/october-2014-vol-39-no-5/containers.

(] (] ° [®
Writing for ;login:
We are looking for people with personal experience and expertise

conferences and workshops, and articles about topics related to any
of these subject areas (system administration, programming, SRE, file
systems, storage, networking, distributed systems, operating systems,

relevant to the computer sciences research community, as well as the
system adminstrator and SRE communities.

reason, is no fun at all. The way to get your articles published in ;login:,

to submit a proposal to login@usenix.org.

PROPOSALS

on writing a book, you need to write one chapter, a proposed table
of contents, and the proposal itself and send the package to a book

are a well-known, popular writer.

;login: proposals are not like paper submission abstracts. We are not

describe the article you wish to write. There are some elements that
you will want to include in any proposal:

* What's the topic of the article?

* What type of article is it (case study, tutorial, editorial,
article based on published paper, etc.)?

wonks, network admins, etc.)?

* Why does this article need to be read?

will be included?
* What is the approximate length of the article?

Start out by answering each of those six questions. In answering the
question about length, the limit for articles is about 3,000 words, and

try to keep your article between two and five pages, as this matches
the attention span of many people.

who want to share their knowledge by writing. USENIX supports many

and security) are welcome. We will also publish opinion articles that are

Writing is not easy for most of us. Having your writing rejected, for any

with the least effort on your part and on the part of the staff of ;login;, is

In the world of publishing, writing a proposal is nothing new. If you plan

publisher. Writing the entire book first is asking for rejection, unless you

asking you to write a draft of the article as the proposal, but instead to

* Whois the intended audience (syadmins, programmers, security

* What, if any, non-text elements (illustrations, code, diagrams, etc.)

we avoid publishing articles longer than six pages. We suggest that you

The answer to the question about why the article needs to be read

is the place to wax enthusiastic. We do not want marketing, but your
most eloquent explanation of why this article is important to the read-
ership of ;login:, which is also the membership of USENIX.

UNACCEPTABLE ARTICLES
Jlogin: will not publish certain articles. These include but are not
limited to:

* Previously published articles. A piece that has appeared on your
own Web server but has not been posted to USENET or slashdot
is not considered to have been published.

* Marketing pieces of any type. We don't accept articles about
products. “Marketing” does not include being enthusiastic about
a new tool or software that you can download for free, and you
are encouraged to write case studies of hardware or software
that you helped install and configure, as long as you are not
affiliated with or paid by the company you are writing about.

* Personal attacks

FORMAT

The initial reading of your article will be done by people using UNIX sys-
tems. Later phases involve Macs, but please send us text/plain format-
ted documents for the proposal. Send proposals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown, LaTex,
or Microsoft Word/Libre Office. lllustrations should be EPS if possible.
Vector formats (TIFF, PNG, or JPG) are also acceptable, and should be a
minimum of 1,200 pixels wide.

DEADLINES

For our publishing deadlines, including the time you can expect to
be asked to read proofs of your article, see the online schedule at
www.usenix.org/publications/login/publication_schedule.

COPYRIGHT

You own the copyright to your work and grant USENIX first publication
rights. USENIX owns the copyright on the collection that is each issue
of ;login:. You have control over who may reprint your text; financial
negotiations are a private matter between you and any reprinter.

é} usenix
4 THE ADVANCED

’ COMPUTING SYSTEMS

ASSOCIATION

WWWw.usenix.org

;login: FALL 2017 VOL. 42, NO. 3

19

https://www.usenix.org/publications/login/october-2014-vol-39-no-5/containers
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/containers

