
www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 31

SYSADMIN

Resourceful
Monitoring under the Microscope

L U C I A N C A R A T A , O L I V E R R . A . C H I C K , A N D R I P D U M A N S O H A N

Typically, monitoring systems record system-wide and application-
level metrics separately, with significant time and expertise being
invested in understanding how one affects the other when diagnos-

ing complex issues. Resourceful, our open source project, bridges the gap
between the two by allowing applications to record the system-level metric
changes caused by each of their actions. For example, a Web server could
record “the time spent in the TCP stack for servicing a request.” We discuss
the ideas that support this approach and provide a number of use cases show-
ing how they can be useful in the real world.

The Usual Suspects
“Why is it slow?” (with the dreaded variant, “Why is it sometimes slow?”) is a question that
sysadmins have been asking ever since computer systems grew complex enough to run soft-
ware. In response, common wisdom suggests deploying monitoring solutions such as Nagios
and Munin to understand the status and evolution of production systems. More recently,
open-source tools such as Prometheus, Heka, and Bosun have become popular by introducing
ideas on tracking multi-dimensional time series that were battle-tested in companies with
large computing infrastructures [6, 7]. They provide APIs with which software engineers
can instrument their code to expose metrics for the monitoring system. The data ends up in
customizable dashboards where it can be queried, used for alerts, or archived.

While there have been significant improvements in the number of available tools and low-
overhead introspection mechanisms (perf, SystemTap [5], DTrace [1], eBPF), easily tying
together the resources used and code paths touched inside the kernel while an application
performs arbitrarily defined activities (such as executing a db query and sending back a
response) remains a challenge, one which Resourceful (rscfl) sets up to solve. This is not
about “fixing everything without waking sysadmins up,” but exploring new design points and
tradeoffs in the monitoring/debugging space that will make your life easier.

Key to this is programmability: we should start using tools that provide their results in ways
that can be naturally consumed, either by dashboards, complex analysis tools, or by applica-
tions themselves, while placing everything they measure in context: in the context of what
other applications/VMs are doing, competing workloads, and lack of perfect isolation. No
metric should be recorded without tracking the circumstances and effect it has on other metrics
within the same time period.

While at first sight simple, those initial ideas have led us to some less obvious design and
implementation choices. By open-sourcing Resourceful, we hope both to start a wider dis-
cussion and to show the ability of solving some difficult real-world problems.

Resourceful: The Ideas
At its core, Resourceful allows applications to express interest in the measurement of fine-
grained kernel-side metrics in order to understand the side effects of userspace actions when

Lucian Carata is a Research
Associate at the Computer
Laboratory, University of
Cambridge. He has done work
in the area of provenance, root-

cause analysis, I/O performance, and system
measurement. lucian.carata@cl.cam.ac.uk

Oliver R.A. Chick is a passionate
hacker of all things, from
compilers to lower levels in
the software stack. He earned
his PhD from University of

Cambridge with a thesis on understanding
the impact of running complex workloads in
virtualized environments. In the process, he
devised new methods to achieve low-side-
effect tracing (shadow kernels).
oliver.chick@cl.cam.ac.uk

Ripduman Sohan is a Senior
Researcher in the systems area
at the Computer Laboratory,
University of Cambridge. He
has done work in the area of

storage, virtualization, end-host networking,
energy-efficient computing, provenance, and
instrumentation.
ripduman.sohan@cl.cam.ac.uk

32  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Resourceful: Monitoring under the Microscope

interacting with the OS: Where was most of the time spent? Was
their execution interrupted by the scheduler, and for how long?
How did the statistics of the TCP stack (retransmits, bytes sent)
change during this time? This takes an application-centric view,
like a monitoring API would, but the measurements are about
the OS and its resource sharing and multiplexing.

Exposing this data in a monitoring context allows gaining
insights about real-time application behavior. Consider the case
of a simple Web server: how would you track per-request page
cache misses, time spent in the TCP stack, time spent doing I/O,
or interactions with the servicing of other requests?

Measurements in Context
One of the significant differences between OS-level debugging
tools and application-monitoring frameworks is the amount
of detail they have about the running application: a monitor-
ing framework may collect custom metrics specific to the
application such as “number of client transactions per second,”
“time taken to run database queries fetching the front page,” or
“number of 404 errors per minute.” This data may be collected
together with per-system global metrics such as “TCP traffic,”
“I/O wait times,” and “CPU load” and be displayed on the same
dashboard for at-a-glance sanity checking.

However, once problems appear, it becomes somebody’s (hope-
fully, somebody else’s) task to figure out how things went wrong.
How useful are dashboards in figuring out the problem? If
“system-wide I/O wait times have increased while the number of
transactions per second have dropped,” do we have a better idea
on where to look for what’s causing the issue? Likely so, but only
with enough experience and intuition about where the problem
might be. That or a lot of trial-and-error. This is the stuff sysad-
min “war stories” are made of.

We propose that it would be helpful to bridge the gap between
application-specific and system-wide metrics. What if you
could collect changes to system-wide metrics in the context of
an application-specific one? What if you could have a metric of
“I/O wait times for each request”? This is what rscfl is imple-
menting through its API: applications declare the boundaries of
interesting actions (“the request”) and “announce” when they
switch from one action to another, while an rscfl kernel mod-
ule measures their kernel side effects. This can also be framed
as a way of understanding what system resources are used by
application-specific actions.

Integration as a Monitoring Solution
Although closer in implementation and low-level mechanisms
to existing tracing tools, rscfl integrates with applications as
a monitoring system would: it provides an API for collection
of fine-grained metrics and allows applications to instrument
code paths implementing a high-level functionality or activity

(i.e., a Web server declaring “this is code for processing a Web
request”). The resulting data can be further exported to inher-
ently distributed monitoring systems such as Prometheus and
be integrated in its larger monitoring infrastructure. Creating a
root-cause diagnosis system like the one discussed by Ostrovski
et al. [4] around this is definitely possible, and we have already
built a prototype [8].

This position as the middle-man requires thought about pro-
grammability and efficiency: rscfl allows applications to access
measurement results by sharing a region of memory between
them and the kernel, giving direct access to results without
extra copying or parsing of data. Do I hear you say, “That poses
security issues”? We have looked at protecting the data as well:
measurements are accessible as normal data structures within
the application’s address space, but by default no other applica-
tions have access to it.

Targeting the Kernel
The point at which any application interacts with the world
outside its own memory address space is through the OS kernel:
whether it is performing I/O, being scheduled together with
other applications, or dealing with hardware failure, the kernel
is the one doing the management. Our experience has been
that these kernel interactions are typically some of the hardest
to understand: the kernel is usually part of the code base that
developers and sysadmins would like to treat as a black box that
“just works.”

On the other hand, you might be forced to learn about details
inside the box once an application is not behaving as expected,
and you’re trying to find its bottlenecks. We propose solving this
disconnect by explicitly exposing the notion of a kernel subsys-
tem when returning measurement data. It seems like the right
level of abstraction to talk about the kernel from an application’s
perspective: “It has spent this much time in the TCP subsys-
tem”; “The file was not cached, so reading from it used the block
subsystem.”

In terms of actual measurements, the kernel remains the ideal
place to understand the side effects of application actions: it is
where resources (CPU, memory, disk) are being shared and time-
multiplexed among multiple processes. However, adding lots of
instrumentation can be costly. In existing probing mechanisms,
the time taken to execute some measurement also depends on
the total number of probes that are active. This is why rscfl uses
a new type of low-overhead probing, called a KAMprobe (Kernel
Advanced Measurement probe). Its execution time only depends
on the complexity of the code being run inside the probe, with
no dependency on how many other probes are active. We’ve been
running kernels with tens of thousands of active measurement
points without a significant performance impact.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 33

SYSADMIN
Resourceful: Monitoring under the Microscope

Virtualization Awareness (Alpha)
Virtualization introduces new challenges in the picture, with
multiple containers or VMs isolated to various degrees from
each other on the same host, but introducing resource sharing
(time, page cache, memory) that applications or OSes are not
directly aware of. We have added hypervisor and containerized
kernel support in Resourceful in order to be able to track those
elements in the context of application actions: with this support,
applications are aware (for example) of the time the VM was not
scheduled in as part of the time added to the latency of particu-
lar actions. This introduces security considerations for cloud
environments, but exploring this area for better understanding
of workload co-location properties is very important.

Case Studies
Beyond the general configurable framework that allows anybody
to extend Resourceful for tracking custom-defined kernel sub-
systems, we have investigated a number of use cases, generally
connected to making our own systems research and problem
troubleshooting easier. They are useful as examples of how the
ideas presented above come together in a coherent manner.

Advanced Cache Monitoring
In a production system, caches are some of the key elements
for maintaining good performance, yet keeping track of their
behavior under complex workloads remains painful, with only
coarse-grained summaries available at the OS-level. Collect-
ing fine-grained information is unpopular because nobody likes
slow caches: any measurement performed on them is by defini-
tion on a hot code path, where every cycle spent counts.

What about measuring things in a test environment? That
doesn’t often work since it’s impossible to know and replicate
production cache behavior—especially for shared environments
like the cloud. Thus, monitoring by getting periodic snapshots
of metrics like hit/miss ratios and eviction rates is typically the
only realistic option. Still, wouldn’t it be nice to be able to dig
deeper and drive optimizations by having a map of what files
were hit/missed in OS caches during different operations per-
formed by your application?

We thought the same and leveraged Resourceful’s low overhead
probing mechanisms to define a PAGE_CACHE measurement
subsystem. As the name implies, it tracks the OS-level page
cache (normally used for file I/O, mmap, or fs metadata). Devel-
opers can choose to monitor the full cache or restrict the parts of
the cache that are tracked (not interested in mmaps? why pay the
overhead?). On the application side, data collection for this sub-
system can be enabled through the API. When per-action aggre-
gations are needed, their boundaries will need to be marked by
API calls as well (e.g., for a Web server, mark parts of the code
servicing a request or switching between them). Table 1 shows a
more detailed comparison with other available mechanisms.

The result allows an application to record per-file cache statis-
tics and give a better idea of when I/O latency degradation hap-
pens due to cache trashing. Knowing which files have incurred
the most misses in the context of a particular action allows you
to make informed compromises: does ensuring a particular file
is cached make the code path you’re interested in faster?

We have used the same functionality to characterize slowdowns
caused by workload transitioning from being fully served from
the cache to requiring disk accesses. In such cases, bottlenecks
can shift (e.g., network-bound operations becoming disk-bound)
for just part of your application, making diagnosis hard.

We’re currently working to add visibility into evictors (who
eliminated the cache entry that caused my process to miss?) and
virtualized environments that hide shared caches (containers).

Hidden Work
The Linux kernel is able to run its own long-lived threads
(kthreads) that are treated by the scheduler as any other process.
They are used by the kernel to deal with long-running work (e.g.,
writing dirty page cache entries back to disk) or with work that
cannot be completed immediately in regions where blocking is
not allowed (such as interrupt service routines). In the latter
case, the kernel provides a general mechanism that drivers can
use to schedule delayed work: work queues.

However, work queues use a thread-pooling model where a
number of long-lived kthreads wait for work to be enqueued from
various subsystems and take on the execution of callback func-
tions doing the actual work as needed. Due to this multiplexing
of work belonging to different kernel subsystems and drivers,
and due to the inherent asynchronicity, it is quite challenging to
get a high-level understanding of what work is being carried out
by a given work queue/kthread at a given time and to deter-
mine what high-level userspace action might have required its
triggering.

We have defined a custom rscfl subsystem named TRACK_
WORKQUEUE to help us in understanding why applications
using an nvme device driver we extended were not achieving
the expected throughput and latency figures. It has allowed us
to monitor the creation and queuing of work inside kernel work
queues as I/O requests from a benchmarking framework (fio)
were issued.

This targeted investigation (monitoring the calls into the
work-queue subsystem from within just a single application
as opposed to system-wide) has allowed us to quickly deter-
mine that instead of using the inherent nvme parallelism, our
modified driver was serializing block device requests through a
single-threaded work queue. Having identified the bottleneck, it
was an easy fix to increase the number of dedicated workers for
that work queue, leading to significantly improved performance.

34  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Resourceful: Monitoring under the Microscope

Latency in Context
As a fully application-facing example, we have modified a non-
blocking Web server to use the rscfl API for tracking resources
consumed while servicing each client request. The resulting
data is both pushed into Prometheus as a time series and used
by a monitoring dashboard in order to understand variations
in latency on a per-request basis. We’ve called this “Latency
Explorer,” a tool that dynamically allows us to compare high-
latency requests with low-latency ones and try to determine
where the differences appear. This provides more visibility into
one of the areas of high interest for understanding any high fan-
out architecture, where tail latency matters greatly [2].

In Figure 1, two views of the system are made available: a latency
distribution and a per-request resource consumption breakdown
based on Resourceful data. Each of the parallel axes in the bot-
tom graph identifies a consumed resource or metric specific to
the application activity (here, responding to an HTTP request).
A given request is thus represented on the graph as a line linking
the corresponding measured values (the dashed line in Figure 1).
An idea of visual analysis using this data is to allow the selection
of different intervals in the latency histogram while coloring the
corresponding requests differently in the resource consumption
graph (Figure 2). Further filtering is available on each of the
resource axes.

Using Resourceful
Until recently, Resourceful was developed at the University of
Cambridge, and while we spoke openly about the tool, its imple-
mentation was considered too immature for release to the wider
world. Realizing the buzz that Resourceful was building in aca-
demic circles, we have been hard at work for the past 18 months
and are now in a position where we are open-sourcing Resource-
ful so it can be used to increase observability in production
systems. Our project is available at github.com/lc525/rscfl, and
we’re accepting both suggestions and contributions. If you have
a monitoring problem where you believe the existing tooling is
inadequate or might benefit from the ideas presented here, we
would welcome your contributions.

Requirements
The core of Resourceful is a system that modifies your running
kernel to insert instrumentation. In order to safely apply this
instrumentation we require some capabilities that may not be
accessible on some systems:

◆◆ Elevated access. Resourceful can be run on any Linux kernel
without requiring a reboot or modification to the kernel as
stored on disk. This is made possible by Resourceful scanning
the running kernel, determining the parts of the running code
that should be measured, and then applying itself to these
regions. Doing that typically requires some form of elevated
privileges. However, once rscfl is running it can be used by any
application.

◆◆ Kernel debug symbols. Resourceful has an automated analy-
sis that determines boundaries in the kernel that should be
measured. To enable us to perform this analysis, Resourceful
requires access to the kernel’s debug symbols. In most Linux
distributions these can be obtained as a separate package that
does not modify the kernel that is running (i.e., the debug sym-
bols live in a separate file and do not affect the running kernel).

Installation
At present Resourceful must be built from Source, however we
are considering packaging it for some distributions. We main-
tain and provide a full set of up-to-date instructions on running
Resourceful on our GitHub page, but here we outline the sets
required at the time of writing.

◆◆ Installation requires you have Git, Wget, and Python 2.7 in-
stalled. We expect these will be installed on most Linux boxes.

◆◆ Beyond that, it should be as simple as running make and make

install.

Modifying Programs to Use Resourceful
Resourceful supplies a C/C++ API with which userspace
programs specify where they start and stop processing a given
activity. While this does mean that applications need to be
modified in order to use Resourceful, the changes in practice are
often trivial and can be added to commonly used remote proce-
dure call libraries in an elegant fashion. The context for mea-

Operation Selection Aggregation Metrics Breakdown

 rscfl • selective (on file read, write, mmap)
• all

• per-app
• per-app action
(programmer defined)

• hit/miss ratio
• eviction rate
• dirty entries
• cached size

• per-file
• summary

OS non-selective (all) system-wide, per-cgroup summary

Tracing non-selective (all) system-wide, per-app custom summary

Table 1: Options offered by rscfl when monitoring caches, in comparison to default OS metrics and tracing mechanisms such as SystemTap, DTrace, or eBPF

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 35

SYSADMIN
Resourceful: Monitoring under the Microscope

surements is being kept by communicating some opaque tags to
the kernel. This is not unlike the strategy taken by other systems
such as XTrace [3], but we are considering asynchronous behav-
ior in greater detail. When receiving a tag that is the same as one
seen before, our kernel module knows that any metric changes
should be accounted to the same activity, and it can perform the
aggregation directly in kernel space.

The general steps for using the API would be as follows:

1. Initialize Resourceful in your program. This creates a Resource-
ful “handle,” which is much like a traditional file descriptor. It
is passed to the other Resourceful functions and contains state
about the innards of Resourceful.

rhdl_t rhdl = rscfl_init() ;

2. When your application starts a new activity (i.e., receives a user
request), it can request a “token” for it and start accounting the
resources it uses:

token_t token ;

rscfl_acct(rhdl, token, ACCT_START);

Figure 1: Latency Explorer, a visual analysis tool prototype

36  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

SYSADMIN
Resourceful: Monitoring under the Microscope

3. When the activity stops (i.e., the request has been sent), we can
stop recording the resources used and read out the values:

rscfl_acct(rhdl, token, ACCT_STOP);

// Read the accounting information that we recorded.

rscfl_account_t rscfl_results;

rscfl_read_acct(rhdl, &rscfl_results);

rscfl_results is a structure from which you can read the kernel
resources used in the processing of your request. This is a broken
down per-kernel subsystem. For this example, we have measured
a default list of performance measurement counters, however
Resourceful also has APIs that can be used to measure spe-
cific resources. Resourceful also contains some magic higher-
order functions that let you perform advanced aggregation of
resources used across many requests (map-fold-filter).

4. In modern systems, processing often takes place in asynchro-
nous event loops. This means the application activity might
complete in stages. If this happens you can tell Resourceful to
apply the resources used to a new activity by switching token:

rscfl_switch_token(rscfl_hdl, new_token);

The API also provides features for storing arbitrary application-
specific metrics together with the kernel-recorded measure-
ments, which is extremely useful when performing a detailed
analysis.

Upcoming Features, Conclusion
Resourceful’s API is currently available for C and C++ only, but
we hope to add wrappers for other popular languages soon. In
particular, this presents a good opportunity for instrumenting
runtimes that provide green threads. Those can be tricky to
monitor at present, and by instrumenting at the runtime level we
would also limit the amount of required changes to application
code. Other planned features target the extension of our visibil-
ity into virtualized environments, and we already have promis-
ing research results in that area.

We’re not aiming to produce just another tool for debugging/
monitoring applications. Instead, we’re hoping to restart a dis-
cussion on what is needed to advance this area in ways that are
helpful to practitioners. Download from github.com/lc525
/rscfl and let us know what you think.

Figure 2: Latency Explorer, interactive filtering for comparing the latencies of requests selected in the Figure 1 histogram: tail latency (dotted) vs latencies
between 95.6 and 140 ms (dashed). Each axis can be further filtered, and that in turn updates the histogram (how does the histogram of response times
look for requests that spent a lot of time in the Networking layer?).

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 37

SYSADMIN
Resourceful: Monitoring under the Microscope

References
[1] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
Instrumentation of Production Systems,” in Proceedings of
the USENIX Annual Technical Conference (ATC ’04), pp. 2–2:
https://www.usenix.org/legacy/event/usenix04/tech/general
/full_papers/cantrill/cantrill_html/.

[2] J. Dean and L. A. Barroso, “The Tail at Scale,” Communica-
tions of the ACM, vol. 56, no. 2 (February 2013), pp. 74–80.

[3] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica,
“X-Trace: A Pervasive Network Tracing Framework,” in Pro-
ceedings of the 4th USENIX Conference on Networked Systems
Design & Implementation (NSDI ’07), pp. 20–20: https://www
.usenix.org/legacy/events/nsdi07/tech/full_papers/fonseca
/fonseca.pdf.

[4] K. Ostrowski, G. Mann, and M. Sandler, “Diagnosing
Latency in Multi-Tier Black-Box Services,” in Proceedings of the
5th Workshop on Large Scale Distributed Systems and Middle-
ware (LADIS ’11): https://static.googleusercontent.com/media
/research.google.com/en//pubs/archive/37477.pdf.

[5] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and B.
Chen, “Locating System Problems Using Dynamic Instrumen-
tation,” in Proceedings of the 2005 Ottawa Linux Symposium
(OLS ’05), pp. 49–64: https://www.kernel.org/doc/ols/2005
/ols2005v2-pages-57-72.pdf.

[6] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-Wide Profiling: A Continuous Profiling Infrastructure
for Data Centers,” IEEE Micro, vol. 30, no. 4 (July/August 2010),
pp. 65–79.

[7] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M.
Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure,” Google
Technical Report, 2010: https://static.googleusercontent.com
/media/research.google.com/en//pubs/archive/36356.pdf.

[8] J. Snee, L. Carata, O. R. A. Chick, R. Sohan, R. M. Faragher,
A. Rice, and A. Hopper, “Soroban: Attributing Latency in
Virtu alized Environments,” in Proceedings of the 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud ’15):
https://www.usenix.org/system/files/conference/hotcloud15
/hotcloud15-snee.pdf.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37477.pdf

