
44    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

SECURITY

Safe Parsers in Rust
Changing the World Step by Step

G E O F F R O Y C O U P R I E A N D P I E R R E C H I F F L I E R

Parsers are critical parts of applications, exposed to potentially mali-
cious data but also plagued by the same bugs over a period of years,
like memory-related problems. Solutions exist but are often not

adopted: many of them require rewriting entire software packages. We
describe how to leverage Rust’s safety features and close integration with C,
the strength of the nom [1] parser combinators library, along with a thorough
methodology [2] to make existing software much more secure by rewrit-
ing critical parts. By surgically replacing functions, we intend to initiate a
change towards robust and memory-safe parsers.

A large part of our infrastructure is built on a sand castle. We have been reusing the same
code for decades, the same libraries written in the ’90s, the same applications, the same oper-
ating systems. We tried, and are still trying, to maintain them, patching bit by bit, mostly in
reaction to published vulnerabilities, sometimes as a proactive effort. But all that old code is
slowing us down.

And if that was not enough, to connect those pieces of code to each other, we have pages and
pages of unclear, ambiguous specifications for file formats and network protocols. How can
you be sure your implementation is correct when some remove features, some add features,
others implement them incorrectly, and there are parts that are completely open to interpre-
tation. Let’s also mention that incorrect files generated by one broken application often end
up supported by everyone else.

Additionally, most of that software has been written in C (sometimes still written in K&R)
and involves unsafe practices and insufficient testing.

One could say it is a miracle that all of this has worked this long, but there is no luck in that. It
is the result of incremental work of thousands of developers patiently fixing bugs, and system
administrators monitoring failing services. But we are losing the race now.

Attackers only get better: what was previously difficult gets simpler, and the tools only get
smarter. More vulnerabilities are published every day, while we keep the same old code and
the same development practices.

We Cannot Rewrite Everything
Whatever the quality of all that code, we cannot replace it. Software gets reused over and
over, with each generation of developers building upon what the previous one built. There’s
much more churn in hardware than software: hardware gets replaced, software stays. We
can write new software with better solutions, but it would not fix the millions of devices
currently in place, or the billions of applications actually running. Our only option is to
strengthen the sand castle bit by bit until it can weather the storm.

Geoffroy Couprie handles
security and quality assurance
at Clever Cloud, develops in
Rust, and researches on parser
security at VideoLAN. He thinks

a lot about cryptography, protocol design, and
data management.
contact@geoffroycouprie.com

Pierre Chifflier is the head of the
intrusion detection lab (LED)
at ANSSI (French National
Information Security Agency).
He is interested in various

security topics such as operating systems,
boot sequence, compilers and languages,
and new intrusion detection methods, and
he is also trying to link all these topics by
improving detection tools, writing safe parsers,
and deploying tools in a secure architecture.
Pierre is also a Debian Developer and has
been involved in free software for a long time.
chifflier@wzdftpd.net

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  45

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

How can we achieve that? Even rewriting application by applica-
tion or library by library is a Sisyphean task. Most of those proj-
ects are written in C, containing 10k to 10m lines of code. Large
parts of that are unmaintained, but there’s also a huge domain
knowledge embedded in the code. Thousands of bug fixes,
improvements, and experimentations with the specifications
were done over the years. And the developers themselves carry
most of this knowledge. Rewriting a project completely means
losing that knowledge and hitting most of those bugs the old
project solved. In addition, rewriting the project entirely creates
political issues and requires teaching the new ways to develop-
ers, all while maintaining the old version. This is impossible to
do in most cases.

Here is what we propose: there are specific parts of applications
and libraries, weaker than the rest, that could be rewritten,
while keeping all of the domain knowledge present in the rest of
the code. Since file formats and protocols are the point of entry
in most applications, we concentrate on the parsers and state
machines, an often overlooked and vulnerable part of the code.

The LangSec approach is in changing the way we view software:
we usually see our programs as some kind of engine or industrial
machine that we set up and monitor but that, except for the occa-
sional button push, largely runs by itself. That vision is flawed:
our computers, operating systems, and programs are designed to
modify their behavior in complex ways depending on their input.

The data you feed to your code—be it network packets, files, sen-
sor data—drives your code, not the other way around. That spe-
cific bit at that specific address in the file determines whether
your code goes into the if or the else of that specific branch. Your
application is in fact a virtual machine, and its language is the
input data. What can we do with this language? By modeling that
input language correctly, or restricting it to a manageable subset,
we can greatly reduce the attack surface of our applications in
their most vulnerable elements.

If we replace the parsers and protocols in an existing application,
we can better protect it from the attackers’ point of entry while
keeping the most useful parts of the code running. To that end,
we need languages and tools that can easily integrate themselves
inside a C application.

Choosing the Tools
We decided to use Rust for various reasons: the language is
designed to avoid memory vulnerabilities and development
issues frequent in other languages. Rust does not use garbage
collection; the compiler is smart enough to know when to
allocate and deallocate memory. The compiler will complain
if the code is unsafe. With this, the compiler can protect your
code from common flaws like double free, use after free, adding
bounds check to buffers, etc. Rust is even able to know which

part of the code owns which part of the memory, and it warns
you when your code manipulates data from multiple threads.

Rust has been available for years now (first stable release in May
2015) and has been steadily improving. Because of the focus on
the compiler, instead of fixing a memory safety issue in your
code, you can improve the compiler so that nobody will ever get
that issue again. Do not fix bugs, fix bug classes.

As you learn more Rust, you tend to rely more and more on the
compiler to verify the code, instead of keeping track of dozens of
pointers in your head, thus freeing you to think about the most
valuable parts of the application.

Along with those features, Rust can work at the same level as C
applications. There’s no runtime. There is no garbage collector
(important in time-critical software). It can even work without
an allocator. As an example, it can be used for embedded develop-
ment, from microcontrollers to larger CPUs. To that end, Rust
code can easily import C functions and structures and use them
natively, but the opposite works as well: you can expose func-
tions and structures to be used by C (or other language) applica-
tions. This is a crucial aspect of rewriting C code: sometimes, we
have to expose and manipulate the exact same types the target
application is using.

Writing parsers manually in Rust is not enough. We can still
find bugs, although they are often less critical than the ones you
would find in C applications [7]. Parsing software correctly is
hard, and anybody can make mistakes.

So we use nom [1], a parser combinators library written in Rust.
Parser combinators are an interesting way to handle data. You
assemble small functions, like one that recognizes “hello,” or one
that recognizes alphanumerical characters, and you combine
them to make more complex parsers through the use of combina-
tors. There are combinators for lots of cases, like “terminated,”
that would apply two parsers in a row, then return the result of
the first if both are successful, or branching combinators that
apply different parsers depending on the result of a first one.

Those parsers are always functions with the same signature,
which means even complex parsers can be easily reused in other
parsers. You end up writing a lot of small parsers, then you can
test them separately, and reapply them in larger parsers as you
see fit. An approach based on parsers generated from a gram-
mar, on the other hand, tends to lack flexibility and is harder to
test. Such parsers are also quite restrictive in what you can allow
from the format you are trying to pass. But since nom parsers
are just functions, you can perform whatever complex, ambigu-
ous, dangerous tasks you need to, and as long as the interface is
the same, you can plug that parser with other parsers. This is an
important property, since most formats are badly designed and
can require unsafe manipulations.

46    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

The nom library leverages Rust features for performance and
safety: since the compiler always knows which part of the code
owns which part of the memory, and tracks references properly,
nom can work on slices of the original data instead of copying
bytes around. In most cases, the parser will only allocate on the
stack and be zero-copy [3].

nom has been available for some time now and has been used
extensively for various formats and protocols in production
software.

Armed with a safe, low-level language, and a parser library, we
can now start rewriting core parts of our infrastructure.

How to Replace Part of a C Application
Not all existing applications will easily support a rewrite of their
parser. If that part of the code is highly coupled with the rest, it
will be problematic. Thankfully, as said earlier, we do not need to
rewrite everything. Find a restricted subset of the parser, isolate
it, rewrite it, then expand to other parts of the application.

The key is in defining the interface correctly. Deterministic
functions are the easiest to replace, and structures are usually
the hardest, since multiple parts of the code might use directly
internal members of that structure (accessors are not a com-
mon practice in C). But there are a lot of tricks one can use to
help in the task. As an example, commenting out a member of a
structure and launching a build can expose all of the uses of that
member, which makes it easier to measure how much work is
needed.

When performing a rewrite, you will often need to import C code
and expose your Rust code to C. You can write the Rust defini-
tions and the C headers by hand, but Rust has tools to automate
this. Rust-bindgen can import C structures and functions from
C, and generate Rust bindings. While the generated code might
be a bit complex at times, it is a great way to start a project and
generate code that you can edit later. The opposite way works as
well: you can employ rusty-cheddar to generate C headers.

The missing part for the integration is the linking phase: think
of how you will link the Rust part to the C part. Do you make a
static or dynamic library? Do you generate an object file that you
feed to autotools? The Rust compiler can generate any of those,
and they can then be handled by the build system, be it autotools
and makefiles, CMake, scons, etc.

On the build-system side of things, Rust uses the cargo pack-
age manager to download libraries (called crates), build and
link them, and publish new libraries and applications. That tool
greatly increases the productivity of Rust developers. Unfor-
tunately, the package management part requires an Internet
connection to download packages, which might not be an option
(do you expect your makefile to make network calls?). Fortu-

nately, cargo is easy to extend with separate tooling. You can
use cargo-vendor or cargo-local-registry to download crates in
advance and store them in an archive somewhere. That way, you
can freeze the dependency list of an application and make its
compilation reproducible, while keeping a simple way to update
dependencies when needed.

Start Integrating Some Rust
Once you have the build system set up, you can start actually
writing Rust code. We would recommend that you develop the
nom parser in a separate crate: that way, you can reuse it in other
projects (Rust or other languages), and you can employ Rust’s
unit testing and fuzzing facilities. Any fuzzing result can then be
reused as a test case for your parser.

nom parsers work well on byte slices, a Rust type that contains
a pointer and a length. You can easily transform any C buffer to
this. They never modify their input, and they don’t even need to
own it. This is important for integration in C applications: even
if we know that Rust code could be stronger than the rest of the
application, it is still a guest in someone else’s house. If possible,
let the host code handle allocations, opening files, etc. This is a
really good tip to apply, because libraries with reentrant, deter-
ministic functions without side effects are easy to integrate, and
I/O is where most of the errors can happen. This is also a part that
(hopefully) has been stabilized long ago in the host application.

The nom parser can return sub slices of the input without copy-
ing them and will guarantee that the data is within the bounds.
In some cases, it does not even need to see the whole input. As
an example, for media formats, you would read a block’s header,
let nom decide which type of block it is, and the parser would tell
you how many bytes of the block you need to send to the decoder.

Here is the code of the TLS 1.3 ServerHello structure definition
and message parsing:

rust

pub struct TlsServerHelloV13Contents<’a> {

 pub version: u16,

 pub random: &’a[u8],

 pub cipher: u16,

 pub ext: Option<&’a[u8]>,

}

pub fn parse_tls_server_hello_tlsv13draft18(i:&[u8])

 -> IResult<&[u8],TlsMessageHandshake>

{

 do_parse!(i,

 hv: 	 be_u16 >>

 random: 	take!(32) >>

 cipher: 	be_u16 >>

 ext: 	 opt!(length_bytes!(be_u16)) >>

 (

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  47

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

 TlsMessageHandshake::ServerHelloV13(

 �TlsServerHelloV13Contents::new(hv,random,cipher,

ext)

)

)

)

}

This code generates a parser reading some simple fields, and an
optional length-value field for the TLS extensions (not parsed in
that example), and returns a structure. All error cases are prop-
erly handled, especially incomplete data.

One characteristic of TLS is that the parsing of messages is
context-specific: the content of some messages cannot be
decoded without having information about the previous mes-
sages. For example, the type of the Diffie-Hellman parameters,
in the ServerKeyExchange message depends on the ciphersuite
from the ServerHello message. Because of that, the context-
specific part is separated from the parsing. A state is used to
store the variables, and a state machine is implemented to check
that transitions are correct, and also to choose the next parsing
function when needed.

The state machine is implemented using pattern matching on
the previous state, and the parsed incoming message, to select
the new state.

rust

match (old_state,msg) {

 // Server certificate

 �(ClientHello, 	 &ServerHello(_)) 	 =>

Ok(ServerHello),

 �(ServerHello, 	 &Certificate(_)) 	 =>

Ok(Certificate),

 // Server certificate, no client certificate requested

 �(Certificate, 	 &ServerKeyExchange(_)) 	=>

Ok(ServerKeyExchange),

 �(Certificate, 	 &CertificateStatus(_)) 	 =>

Ok(CertificateSt),

 �(CertificateSt, 	 &ServerKeyExchange(_)) 	=>

Ok(ServerKeyExchange),

 �(ServerKeyExchange,	&ServerDone(_)) 	 =>

Ok(ServerHelloDone),

 �(ServerHelloDone ,	&ClientKeyExchange(_)) 	=>

Ok(ClientKeyExchange),

 // ...

 // All other transitions are considered invalid

 _ => Err(InvalidTransition),

In some cases, the next state depends not only on the message
type but also on content. In that case, the packet content is also
used in the pattern matching to select the new state.

Finally, the combinator features of nom are especially useful for
protocols like TLS: TLS certificates are based on X.509, which
uses the DER encoding format. This makes writing an indepen-
dent parser easier, as in the following code:

rust

use x509::parse_x509_certificate;

/// Read several certificates from the input buffer

/// and return them as a list.

pub fn parse_tls_certificate_list(i:&[u8])

 -> IResult<&[u8],Vec<X509Certificate>>

{

 many1!(i,parse_x509_certificate)

}

Parsing an X.509 certificate is done by combining the DER pars-
ing functions:

rust

pub fn x509_parser(i:&[u8]) -> IResult<&[u8],X509Certificate> {

 map!(i,

 parse_der_defined!(

 0x10,

 parse_tbs_certificate,

 parse_algorithm_identifier,

 parse_der_bitstring

),

 |(_hdr,o)| X509Certificate::new(o)

)

}

Be wary of the high coupling that can appear between the parser
and the rest of the code in some C applications. This is where
most of the work can happen and is usually the result of years of
hacks upon hacks to add a feature “quick and easy.”

We usually recommend that the parser has a clear interface with
the rest of the code, in the form of a list of small, deterministic
parsers and a reduced state machine above it: not a complete
state machine intertwined with the parsing (as in this http
parser [8]) since those are hard to debug and extend, nor a state
machine informally implemented via calls from other parts of
the code.

The state machine is the main interface for the rest of the code:
you feed it data to parse, it decides which parser to apply depend-
ing on the current state, changes its state depending on the data
that was parsed (if successful), then returns with info to drive
the input consumption: how many bytes to consume (or how
many more bytes are needed) or to stop consuming if there was
an error. You can then query this state machine for the informa-
tion you want and for data to write back to the network (in the
case of a network protocol).

48    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

SECURITY
Safe Parsers in Rust: Changing the World Step by Step

If the code is not highly coupled, you could even rewrite function
by function, since the Rust code can expose C-compatible func-
tions. Beware, though: take the time to write a correct internal
API for Rust code, since at some point, you might stop exporting
those functions and call the underlying functionality directly
from Rust.

You could spend a large part of the work making the new parser
bug compatible with the old one. This is often a bad approach,
since both parsers will probably not recognize the exact same
set of files. You only need to worry about recognizing the same
representative set of samples. Most C parsers are not even really
tested regularly anyway. If you still want to get close results to
the original parser, you could employ a smart fuzzer to do the
work of testing the difference. Write a program that wraps both
the C parser and the new nom one, and that panics if both pars-
ers do not return the same result.

Once the parser is written and in the source, be happy, for now
the “interesting” part of the work will begin: getting it accepted
in the tree and deciding how you will handle the software sud-
denly requiring a Rust compiler along with the old C toolchain.

Going Further
This approach of surgically rewriting parts of an application
works well since it is designed to have a minimal impact on the
original project. It can be used as a stepping stone to start replac-
ing larger parts of the application once all the details of build
systems and developer training are handled.

But some projects could never handle that kind of precise touch.
Some libraries, still in active use today, have highly coupled
spaghetti code, relying heavily on GOTO or setjmp, and are basi-
cally untested and unmaintained. This is one of the rare cases
where we’d recommend rewriting the whole project in Rust. This
is a place where this language can shine; you could write a whole
new library, completely API-compatible with the old one, that
you could drop into package managers as an alternative.

Think of how many parts of our infrastructure we could replace
like this, bit by bit. It’s a Herculean task, so we need to start now.

This work was presented in the 2017 LangSec Workshop [4], in the
“Writing parsers like it is 2017” [2] paper. The parsers and tools
are published in the Rusticata [5] and VLC module [6] GitHub
projects.

References
[1] Rust parser combinator framework: https://github.com​
/Geal/nom.

[2] P. Chifflier and G. Couprie, “Writing parsers like it is 2017,”
IEEE LangSec Workshop ’17: http://spw17.langsec.org/papers​
/chifflier-parsing-in-2017.pdf.

[3] G. Couprie, “Nom, a Byte-Oriented, Streaming, Zero-Copy
Parser Combinators Library in Rust,” IEEE LangSec Work-
shop ’15: http://spw15.langsec.org/papers/couprie-nom.pdf.

[4] IEEE LangSec Workshop’17: http://spw17.langsec.org.

[5] Rusticata: Safe parsers community: https://github.com​
/rusticata.

[6] Helper library to write VLC modules in Rust: https://github​
.com/Geal/vlc_module.rs.

[7] List of Rust applications with bugs found by fuzzing:
https://github.com/rust-fuzz/trophy-case.

[8] Node.js http parser: https://github.com/nodejs/http-parser.

https://github.com/Geal/nom
https://github.com/Geal/nom
http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf
http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf
http://spw15.langsec.org/papers/couprie-nom.pdf
http://spw17.langsec.org
https://github.com/rusticata
https://github.com/rusticata
https://github.com/Geal/vlc_module.rs
https://github.com/Geal/vlc_module.rs
https://github.com/rust-fuzz/trophy-case
https://github.com/nodejs/http-par

