
www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  49

COLUMNS
A small confession: when writing code, I don’t usually write tests first.

There, I’ve said it. Hate me. I suspect I’m not alone among Python
developers. Yes, yes, testing is important, and for my major projects,

tests still get written. However, for a lot of small things like little scripts,
utilities, and personal projects, I just don’t bother because I don’t want to
think about all of the extra steps and tooling that’s usually involved. How-
ever, a recent conference experience may have changed some of my views. In
this installment, I discuss a more lightweight approach to testing along with
a brief introduction to some third-party testing libraries, including pytest [1]
and Hypothesis [2].

A Revelation
Early this summer, I attended a talk by Aur Saraf at PyCon Israel in which he live-coded a
simple interpreter from scratch in about 25 minutes [3]. Live coding in front of an audience is
always a dicey affair, but what struck me about this particular talk is the fact that it was done
entirely in a test-driven development style with no connection to any sort of testing tools,
third-party libraries, or even standard library modules. I was both stunned and amazed.

The gist of the idea is simple. If you’re going to write a function, you might as well first write
an assertion or two for it. For example, suppose you were writing a function to split a URL
into parts. You might start by writing this:

def split_url(url):

 pass

assert split_url(‘http://www.python.org’) == (‘http’, ‘www.python.org’)

The assert statement serves as a kind of expectation for what you want to happen. Naturally,
the code is going to fail immediately as you haven’t actually written the function. However,
the assertion gives you a target to aim for. So your next step is to implement the function and
make the assertion pass.

def split_url(url):

 parts = url.split(‘://’)

 return (parts[0], parts[1])

assert split_url(‘http://www.python.org’) == (‘http’, ‘www.python.org’)

It passes. Very good. At first glance, this might seem too minimal and maybe even a bit crazy.
However, there’s a certain genius to it. First, it doesn’t require any special knowledge of
libraries or tools (e.g., the unittest standard library module): assert is a built-in statement
of the core Python language. There are also no separate files to maintain or extra functions
to write—the assert is just inlined right there in the code. It executes right after the function
is defined. This means that the code won’t even run or import unless the test passes. Thus, if
you’re working on some new thing and changing your code a lot, it can be useful to just leave
it in there for the time being. It’s a minimal test that doesn’t require too much thought and
doesn’t really interfere with what you’re doing.

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Quick Testing
D A V I D B E A Z L E Y

50    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS
Quick Testing

Getting back to Aur’s talk for a moment, he proceeded to write
his entire interpreter in this style. Assertions first and then
functions. As I watched, I kept thinking, “I bet I could use some-
thing like this.” I also recognized that it could be a useful step-
ping stone to other more advanced testing tools. So let’s explore
that further.

Putting It into Practice
In one of my current projects, I’m faced with the problem of
implementing a priority queue. A standard technique for creat-
ing such a queue is to use a heap data structure. In fact, Python
provides a heapq standard library module that can be used to do
it. However, my specific problem has the extra requirement of
supporting cancellation (i.e., the ability to remove/cancel items
anywhere in the queue). Sadly, the standard heapq module has
no support for that. In fact, efficiently removing items from a pri-
ority queue is a rather tricky algorithmic problem. Thus, it seems
that I’m probably going to have to roll my own class for it.

Let’s start by sketching out a class:

class PriQueue:

 def __init__(self):

 pass

 def push(self, item):

 pass

 def pop(self):

 pass

 def remove(self, item):

 pass

It does nothing, but let’s write some assertions that encode our
expectations of how it should work:

class PriQueue:

 ...

Test code (put right after the class)

q = PriQueue()

q.push(4)

q.push(3)

q.push(7)

q.push(10)

q.remove(4)

Popping all items produces them in order

assert [q.pop() for _ in range(3)] == [3, 7, 10]

Running this code, it will fail because we haven’t implemented
anything. However, we can now fill in some details of the
implementation:

pqueue.py

import heapq

class PriQueue:

 def __init__(self):

 self.heap = []

 def push(self, item):

 heapq.heappush(self.heap, item)

 def pop(self):

 return heapq.heappop(self.heap)

 def remove(self, item):

 self.heap.remove(item)

q = PriQueue()

q.push(4)

q.push(3)

q.push(7)

q.push(10)

q.remove(4)

assert [q.pop() for _ in range(3)] == [3, 7, 10]

If you run this code, it passes its simple test and we’re on our way.

From Asserts to Functions
Having assertions placed in the code is really only a starting
point. As the code evolves, you can move the test into a more
proper function. For example, maybe you do this:

pqueue.py

...

def test_priqueue():

 q = PriQueue()

 q.push(4)

 q.push(3)

 q.push(7)

 q.push(10)

 q.remove(4)

 assert [q.pop() for _ in range(3)] == [3, 7, 10]

if __name__ == ‘__main__’:

 test_priqueue()

Writing a function is an easy step—you don’t even have to change
your testing code (well, other than indenting it). However, if you
do this, you’ll open the doors to incorporating your tests with
other testing tools.

For example, this code can be executed under a testing tool like
pytest [1]. One of the nice things about pytest is that it works
using standard Python assert statements. Assuming that you
have it installed, drop into the shell and type this:

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  51

COLUMNS
Quick Testing

bash $ python3 -m pytest pqueue.py

================= test session starts ==================

platform darwin -- Python 3.6.1, pytest-3.0.2, py-1.4.31,

pluggy-0.3.1

rootdir: /Users/beazley/Desktop/UsenixLogin/beazley_fall_17,

inifile:

plugins: hypothesis-3.11.6

collected 1 items

pqueue.py .

=============== 1 passed in 0.00 seconds ===============

Excellent. Keep in mind it didn’t take much to get here. No spe-
cial imports or fooling around with the unittest module—just a
function with an assert in it. Later on, you could move the test-
ing function over to a more dedicated testing file. For now, it’s
fine where it is. After all, we’re still working.

From a Function to Hypothesis
One of the problems with our code is that the test is fairly mini-
mal. It tests just one case. How are we to know if our queue code
actually works as intended across all inputs? We could generate
more test cases by hand, but doing so is going to be rather painful
and error-prone if it involves a bunch of cut-and-paste.

To better handle this, let’s change our testing function so that it
is parameterized with some inputs:

def test_priqueue(items, remove_item):

 q = PriQueue()

 for item in items:

 q.push(item)

 # Remove the given item

 q.remove(remove_item)

 items.remove(remove_item)

 # Verify that items come out in the proper order

 assert [q.pop() for _ in range(len(items))] == sorted(items)

This change allows us to feed different inputs into the function.
For example, we can do this:

...

if __name__ == ‘__main__’:

 test_priqueue([4,3,7,10], 4)

 test_priqueue([9,2,1,8,5], 2)

 test_priqueue([4,1,6], 1)

Running this, you’ll find that the code still seems to pass for those
three test cases. Our confidence is building. However, how do we
really know that we’ve covered all of our bases? It’s hard to say.

One of the more interesting tools on the Python testing front is
Hypothesis [2]. In a nutshell, Hypothesis can randomly generate
test cases for you as long as you are able to describe the param-
eters to the test. Take the above test function exactly as you’ve
written it and decorate it as follows:

pqueue.py

...

from hypothesis import given

from hypothesis.strategies import lists, integers

@given(lists(integers(min_value=0, max_value=9),

 unique=True, min_size=10, max_size=10),

 integers(min_value=0, max_value=9))

def test_priqueue(items, remove_item):

 q = PriQueue()

 for item in items:

 q.push(item)

 # Remove the given item

 q.remove(remove_item)

 items.remove(remove_item)

 # Verify that items come out in the proper order

 assert [q.pop() for _ in range(len(items))] == sorted(items)

if __name__ == ‘__main__’:

 test_priqueue()

At first glance, this looks a bit scary, but the @given decorator is
used to describe the arguments to the test_priqueue() function.
In this case, the first argument (items) is going to be a 10-ele-
ment list of unique integers with values in the range 0 to 9. The
second argument (remove_item) is an integer with a value in the
range 0 to 9.

Running the new code, you’ll now find that it fails. Your output
might vary from this, but it will look roughly like this:

$ python3 pqueue.py

Falsifying example: test_priqueue(items=[1, 2, 3, 4, 0, 5, 6, 7,

8, 9], remove_item=0)

Traceback (most recent call last):

 File “pqueue.py”, line 35, in <module>

 test_priqueue()

 ...

 File “pqueue.py”, line 32, in test_priqueue

 assert [q.pop() for _ in range(len(items))] == sorted(items)

AssertionError

What’s happened here is that Hypothesis has automatically
found a test-case that fails and is reporting it. To better see what
happens, put a print statement in your test code:

52    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS
Quick Testing

pqueue.py

...

@given(lists(integers(min_value=0, max_value=9),

 unique=True, min_size=10, max_size=10),

 integers(min_value=0, max_value=9))

def test_priqueue(items, remove_item):

 print(‘TRYING:’, items, remove_item)

 q = PriQueue()

 for item in items:

 q.push(item)

 # Remove the given item

 q.remove(remove_item)

 items.remove(remove_item)

 # Verify that items come out in the proper order

 assert [q.pop() for _ in range(len(items))] == sorted(items)

Now, let’s clear the environment and try running again:

bash $ rm -rf .hypothesis

bash $ python3 pqueue.py

TRYING: [3, 0, 1, 9, 8, 6, 4, 5, 2, 7] 5

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 1, 0, 2, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 1, 0, 2, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 7, 0, 2, 1, 5] 1

TRYING: [9, 6, 4, 8, 3, 2, 0, 7, 1, 5] 1

...

TRYING: [0, 3, 4, 6, 1, 2, 8, 5, 7, 9] 0

Falsifying example: test_priqueue(items=[0, 3, 4, 6, 1, 8, 2, 5,

7, 9], remove_item=0)

TRYING: [0, 3, 4, 6, 1, 8, 2, 5, 7, 9] 0

Traceback (most recent call last):

 File “pqueue.py”, line 36, in <module>

 test_priqueue()

 ...

 File “pqueue.py”, line 33, in test_priqueue

 assert [q.pop() for _ in range(len(items))] == sorted(items)

AssertionError

In this case, you’ll see the test function invoked repeatedly with
all sorts of inputs. Basically, Hypothesis is trying random inputs
searching for a failure. Since our code is buggy, it will eventu-
ally find one although it might take some searching. That’s
pretty neat. It found a bad test case, and I really didn’t have to do
much work. Our testing code is still pretty small—just a single
function.

Fixing the Bug
In the case of my example, there is a bug in item removal. When
the item is removed, the underlying heap structure is not pre-
served properly. This can be fixed with a minor change.

pqueue.py

import heapq

class PriQueue:

 def	 __init__(self):

 	self.heap = []

 def 	push(self, item):

 	heapq.heappush(self.heap, item)

 def 	pop(self):

 	 return heapq.heappop(self.heap)

 def 	remove(self, item):

 	self.heap.remove(item)

 	 heapq.heapify(self.heap) # <- Add this line

...

If you run the program again, you’ll see Hypothesis fire 200 ran-
dom inputs at the test_priqueue() function, but they’ll all pass.
In fact, each time you run the program, you’ll get a different set
of inputs as it searches for failing test cases. Should a failure be
found, it will be recorded for inclusion in further tests. For now,
we’re safe though.

Final Thoughts
This whole approach to testing out new code and small libraries
is interesting. When starting out, the inlined assertions provide
a basic level of testing for implementing the initial code. Those
tests can naturally evolve into a testing function that can be
used with popular testing tools like pytest. Later, you can evolve
that testing function into something for use with a package like
Hypothesis, where hundreds of test cases can be generated for
you automatically. The code is still small and it’s allowing me
to focus on the actual problem I’m trying to solve. For example,
with just that one testing function, I can start experimenting
with different queue implementations and have a reasonable
expectation of finding bugs if I break anything. It’s neat.

References
[1] pytest: http://pytest.org.

[2] Hypothesis: http://hypothesis.works.

[3] Aur Saraf, at PyCon, Israel: http://il.pycon.org/wwwpyconIL​
/agenda/174.

http://pytest.org
http://hypothesis.works
http://il.pycon.org/wwwpyconIL/agenda/174
http://il.pycon.org/wwwpyconIL/agenda/174

