
60    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS

Golang
Creating and Using Certificates with TLS

C H R I S M C E N I R Y

In this article, we’re going to extend Kelsey’s original work from Spring
2016 ;login: on the gls service [1]. To recap, gls is a distributed ls tool,
which calls out to a listening service to perform a directory listing. One

of the open items left from that article is the concern around authentication
and authorization. To extend that, we’re going to add secured authentica-
tion to both sides of the gls tool and with this we’re going to gain a minimal
amount of authorization.

The ubiquitous Internet connection security protocol is currently Transport Layer Secu-
rity (TLS). TLS is used to encrypt, authenticate, and authorize (to a degree) connections.
The defaults handle encryption for us well enough, so in this article, we’re going to exam-
ine authentication and authorization. Authentication is based on the names on exchanged
certificates that have been signed by third party certificate authorities. Once identity has
been established, the service can then incorporate a base level of authorization based on the
names (e.g., parsing user=$username so it will get access to items specific to $username) on
the certificates or on the certificate chain (e.g., this was signed by the “users” CA, so it will
get access to common user items).

In our example, we want to ensure four items: encrypted communication, successful identi-
fication of the glsd server (that the one gls connects to is the proper one), successful identi-
fication of the gls client (that the one that connects to the glsd server is the proper one), and
restricted access of the gls client as appropriate. To accomplish this, we’re going to add TLS
between the client and the server, enable verification on both server and client, and compare
the certificate identity to a good list. In order to support all of this, we need to first generate
some private keys and certificates for gls and glsd to use.

NOTE: We’ve cut some corners to simplify the example in this article. Several additional areas
should be considered in a full production PKI infrastructure, including, but not limited to, use
of intermediate CAs, revocation lists, full subjects, selection of hash, key properties, private key
encryption with a passphrase, etc.

Certificates
In terms of authentication, TLS is a form of public key cryptography. If you’re not familiar
with it, you can read Radia Perlman’s ;login: article about Bitcoin [2]. The issue with plain
public key cryptography is that you have to distribute the public keys. Instead of having to
distribute every certificate for every service to every potential user of that service, TLS
builds a chain of trust in the same way that a Web browser authenticates a Web site like a
bank or hospital.

When I use a browser to connect to a Web site, the site sends my browser a certificate. This
certificate has the Web site’s public key and a subject name that identifies the Web site, and
it is signed by a trusted third party called the certificate authority (CA). My browser has a
bundle of certificate authorities, and it looks for a match for the signature in that bundle. If
there isn’t a match, the browser will alert about an untrusted certificate. With a matching

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  61

COLUMNS
Golang: Creating and Using Certificates with TLS

signature, the browser can verify that the Web site’s certificate
has been issued by the CA, and so the browser trusts it. In this
way, the browser doesn’t have to have the certificate for the Web
site ahead of time but only needs to have a much smaller set of
certificate authorities to use to verify.

After the chain of trust has been used to verify that the Web
site’s certificate is valid, the browser does another check. This
time, it takes the subject name on the certificate and compares
that to the DNS name that the browser used to connect. If the
certificate name does not match the DNS name, the browser will
alert to a name mismatch. If it does match, the browser trusts
the Web site and proceeds.

This chain of trust can be used to authenticate the client side
as well, with one caveat. The Web server can require that my
browser supplies a certificate as well, and it can compare the
signature on that certificate to its bundle of trusted certificate
authorities. In most cases, this is for an internal or private situ-
ation, so there’s only one certificate authority to check against,
but uses can vary. However, a DNS check of the client is unlikely
to work in many cases: multiple clients behind a Network
Address Translation, residential networks, or networks behind
dynamic addressing are all unlikely to be able to issue certifi-
cates appropriately to match the actual end client. Therefore,
the server is very unlikely to check the name on the certificate in
the same way as the client does to authenticate the server. The
server uses the certificate in two ways: the name on the certifi-
cate can be used to identify the user or provide a group or role;
and the fact that the certificate is signed is often used to provide
a base level of authorization (“if it’s signed, it’s allowed in”).

Since this is a private service, we can consider that our certificate
authority handling and chain handling is working together. That
allows us to only produce three certificates: a common certificate
authority, a server certificate, and a client certificate. The server
certificate will get the localhost name since that is what is being
used to connect to; and we’re going to encode a username, glss
Client A into the client certificate to show a stronger authentica-
tion approach than just verifying the certificate.

Building on the gls Package with the glss Package
Before we start, we need a place to work that isn’t conflicting
with previous work. We want to use the existing work of the RPC
mechanisms in the gls package and only add the pieces that we
need. We’re going to use the built-in package manager go get to
pull in Hightower’s work, and augment this with our own work-
ing path. For article space, the full code is not in this article, but
it is available on GitHub [3]. You can pull in the final source code
for this exercise along with the original source code. If you want to
assemble the code yourself, this article steps through that, but you
will have to fill in some of the gaps. To get started down that path:

 $ go get github.com/kelseyhightower/gls

 $ mkdir -p $GOPATH/src/github.com/cmceniry/login-glss

 $ cd $GOPATH/src/github.com/cmceniry/login-glss

 $ mkdir -p certs server client

Otherwise, you can pull in the new code along with the original:

 $ go get github.com/kelseyhightower/gls

 $ go get github.com/cmceniry/login-glss

go get will place the gls package at $GOPATH/src/github.com
/kelseyhightower/gls. We will be referencing it in our import
statements much as we do for the standard library utilities:

 import (

 “fmt”

 “github.com/kelseyhightower/gls”

)

Instead of using the utilities gls and glsd in the existing gls pack-
age, we’re going to create three new utilities in the login-glss
package: client/main.go and server/main.go, to hold the service
like before but with TLS encryption, and a new command,
certs/main.go, which we’ll next use to generate our keys and
certificates.

Generating Keys and Certificates
As a private service, we’re going to handle all of the certificate
and certificate authority management internally. In a production
case, this may work, or you may want to use a commercial vendor
or Let’s Encrypt [4]—the process for obtaining certificates and
keys is slightly different, but we’ll end up with the same resulting
items. In addition, since this is again internal, we’re going to use
one certificate authority for the client and the server certificate
signing. Since this exercise is on Go, we’re going to generate
these using Go itself. Let’s start this by opening a new file:

 certs/generate_certs.go

The Go standard crypto library has all of the functions needed to
generate certificate/key pairs. We’ll want to import these librar-
ies and some other ones that we’ll be using into our file:

 package main

 import (

 “crypto/rand”

 “crypto/rsa”

 “crypto/x509”

 “crypto/x509/pkix”

 “encoding/pem”

 “io/ioutil”

 “math/big”

 “time”

)

62    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS
Golang: Creating and Using Certificates with TLS

Since we have three keys and certificates to generate, we’re going
to wrap this process up into a single function, generateKeyAndCert.
This function takes in a subject name and the certificate and key
of a certificate authority. We can use the same function for our
certificate authority, and in that case, nil can be passed for the
signer and signerkey.

 func generateKeyAndCert(

 name string,

 signer *x509.Certificate,

 signerkey *rsa.PrivateKey,

) (

 *rsa.PrivateKey,

 *x509.Certificate,

) {

generateKeyAndCert’s body has four parts to it. First, we have
to generate the private key/public key pair. As mentioned, a key
is a set of cryptographic numbers, in this case represented as an
rsa.PrivateKey [5] struct. The inputs to it are limited—a random
number source, which we’re using as the default, and a key
length. Later, we’ll be using one of the fields of the key, the paired
PublicKey, to generate the certificate.

 key, _ := rsa.GenerateKey(rand.Reader, 2048)

Second, we must generate a template x509.Certificate [6]. It might
be a bit confusing, but the template is of type x509.Certificate,
which is the same type that we’ll receive at the end. The template
is used by the standard library function to generate certificates
for where to source all of the information that we’ll need. There
are a few required fields: SerialNumber (unique distinguisher),
Subject (which is where we’re going to push CommonName),
NotBefore/NotAfter (which determine the lifetime of this certifi-
cate), and KeyUsage (the intended purpose of this certificate).

template := &x509.Certificate{

 SerialNumber: big.NewInt(1),

 Subject: pkix.Name{CommonName: name},

 NotBefore: time.Now().Truncate(24 * time.Hour),

 NotAfter: time.Now().Truncate(24 * time.Hour).

 Add(365 * 24 * time.Hour),

 KeyUsage: x509.KeyUsageKeyEncipherment |

 x509.KeyUsageDigitalSignature,

 }

Since this is a dual purpose function, we might be generating
a certificate authority. In those cases, we need to set a couple
of additional fields: IsCA must be true, and KeyUsage must be
extended for this additional purpose. Additionally, we also need
to set our currently nil-valued signer and signerkeys. As a root
CA, we’re going to set these to themselves.

 if signer == nil || signerkey == nil {

 template.IsCA = true

 template.KeyUsage |= x509.KeyUsageCertSign

 signer = template

 signerkey = key

 }

Next, we’re ready to generate our certificate using the standard
library function: x509.CreateCertificate. In addition to the
default source for random numbers, it uses the template, the
signer, our newly generated public key, and the signer’s private
key to create a binary blob representing the signed certificate.

 der, _ := x509.CreateCertificate(

 rand.Reader,

 template,

 signer,

 &key.PublicKey,

 signerkey,

)

And, finally, we need to make this binary blob useful. This
binary blob is DER encoded [7]. While this is useful to functions
handling binary data, we want to force the structure and type
consistency of the language and turn this into a full certificate
datatype.

 cert, _ := x509.ParseCertificate(der)

We now have the actual key and cert, so we can pass those back:

 return key, cert

 }

Once we generate these, we’ll need to be able to save them to disk
to be used by our client and server utilities. The standard format
for handling key and certificate files is called privacy-enhanced
electronic mail (PEM; https://en.wikipedia.org/wiki/Privacy​
-enhanced_Electronic_Mail) encoding. The PEM is an ASCII
form generated from the binary data, held as an array of bytes
in Go, of the keys and certificates. Extracting the binary data
is slightly different for keys and certificates, but both need to
be converted over to this PEM format, and there are standard
library functions available for this. Once we get the PEM form in
memory, we can dump this to disk using the convenient ioutil.

WriteFile function.

 func saveKeyAndCert(

 prefix string,

 key *rsa.PrivateKey,

 cert *x509.Certificate,

) {

 keyBytes := x509.MarshalPKCS1PrivateKey(key)

 keyPem := pem.EncodeToMemory(

 &pem.Block{Type: “RSA PRIVATE KEY”, Bytes: keyBytes})

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  63

COLUMNS
Golang: Creating and Using Certificates with TLS

 ioutil.WriteFile(prefix+”.key”, keyPem, 0444)

 certPem := pem.EncodeToMemory(

 &pem.Block{Type: “CERTIFICATE”, Bytes: cert.Raw})

 ioutil.WriteFile(prefix+”.crt”, certPem, 0444)

 }

With our wrapping and save-to-disk functions, we can put
together our main function. Note the use of the CA keys and
certificates to generate the actual end keys and certificates:

 func main() {

 caKey, caCert := generateKeyAndCert(

 “glss Root CA”,

 nil, nil)

 saveKeyAndCert(

 “certs/CA”, caKey, caCert)

 serverKey, serverCert := generateKeyAndCert(

 “localhost”,

 caCert, caKey)

 saveKeyAndCert(

 “certs/server”, serverKey, serverCert)

 clientKey, clientCert := generateKeyAndCert(

 “glss Client A”,

 caCert, caKey)

 saveKeyAndCert(

 “certs/client”, clientKey, clientCert)

 }

With this utility written, we’re now ready to execute it. Since
this is a one-time tool for this exercise, let’s just run it:

 $ go run certs/generate_certs.go

You should see several certificate and key files in the certs
directory:

 CA.crt

 CA.key

 client.crt

 client.key

 server.crt

 server.key

Now that we have all of the certificates, we can proceed into
encryption and authenticating our communications.

Server Changes
Part of what makes this powerful in Go is that we won’t have
to change much code to wrap the calls in TLS. We can change
some pieces of the setup to include TLS setup, and the rest of the
application is unchanged. Part of this is because we’re able to
swap out different types that satisfy the same Go interface—in
particular net.Conn on the server side.

Start by copying the original server and client utilities from the
gls package.

 $ cp \

 $GOPATH/src/github.com/kelseyhightower/gls/server/main

 go \

 ./server/main.go

We’re going to start by updating the import list. We have to add
specific crypto libraries that we’re going to be using as well as
add back in the reference to the original gls library.

 import (

 ...

 “crypto/tls”

 “crypto/x509”

 “io/ioutil”

 “github.com/kelseyhightower/gls”

)

Next, we need to initialize the TLS settings for the server. This
involves three parts: loading the server key pair, loading the
certificate authority certificate to verify against, and then using
those to set the TLS configuration. To load the key pair, we will
use the tls.LoadX509KeyPair function.

 func main() {

 cert, err := tls.LoadX509KeyPair(“certs/server.crt”,

 “certs/server.key”)

 if err != nil {

 log.Println(err)

 return

 }

TLS connections are verified against a CertPool, which is a list
of certificate authorities used to check for signatures. In the case
of verifying against a wide range of certificate authorities, like a
browser would do, you can keep adding certificate authorities to
the pool. In this case, we only have our internal certificate, so we
can add only it to the CertPool. Since the certificate authority is
a bare certificate (i.e., it doesn’t include a private key), we can’t
use tls.LoadX509KeyPair to get the certificate; we have to load it
separately and then add it bare to the CertPool.

 caCert, err := ioutil.ReadFile(“certs/CA.crt”)

 if err != nil {

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

Now with the server certificate and the certificate authority, we
can set the TLS configuration. In addition to the certificates, we
want to require that we authenticate the client using TLS.

64    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS
Golang: Creating and Using Certificates with TLS

 config := &tls.Config{

 Certificates: []tls.Certificate{cer},

 ClientCAs: caCertPool,

 ClientAuth: tls.RequireAndVerifyClientCert,

 }

As we’ll see in the client, Go has a convenience function inside
of TLS for connections; for the server, tls.Listen can replace
net.Listen. However, we need to be able to access the peer infor
mation, so we have to set up TLS directly and can’t use this.
Luckily, this only requires a couple of lines (plus error checking):
one to create the TLS connection object, and one to perform the
TLS handshake.

 for {

 conn, err := l.Accept()

 if err != nil {

 log.Println(err)

 }

 tlsconn := tls.Server(conn, config)

 err = tlsconn.Handshake()

 if err != nil {

 log.Fatal(err)

 }

Once the TLS handshake is successful, we can inspect the con-
nection for the client information and confirm it is correct. Note
that we may get multiple certificates on the connection. A client
may send its full certificate chain or a partial certificate chain
over the connection if it needs to connect intermediate certifi-
cates to a root. The key here is that first certificate (index 0)
will be the leaf certificate for this client, so it will be the one we
check against. In our particular case, we’re going to compare the
subject’s CommonName, but other situations could use other fields
of the certificate.

 tlsclient := tlsconn.ConnectionState().PeerCertificates[0]

 if tlsclient.Subject.CommonName != “glss Client A” {

 log.Fatal(“Invalid client”)

 }

 log.Printf(“user=\”%s\” connect”,

 tlsclient.Subject.CommonName)

Now that we’ve verified the certificate chain (via the ClientAuth
setting on tls.Config) and checked that the CommonName is
correct, we can proceed with the net/rpc call. Special Note:
since this is providing a wrapper layer, we’re going to insert this
between the Accepted connection and rpc.ServConn. Accept
and tls.Server both return net.Conn, and rpc.ServConn takes
in a net.Conn. rpc.ServConn isn’t aware that the data is being
encrypted underneath it.

 rpc.ServConn(tlsconn)

 conn.Close()

 }

You can confirm everything by building the server the same as
before:

 $ go build -o glssd server/main.go

At this point, we’ve added TLS to the server side without having
to change any of the underlying net/rpc items. Now we need to
do the same on the client side.

Client Changes
The client changes are the same as on the server side except that
we don’t have to check anything additional on the certificate’s
CommonName—this is handled by default when TLS authenti-
cates servers. As before, start by copying the existing gls client
over to our new working directory:

 $ cp \

 $GOPATH/src/github.com/kelseyhightower/gls/client/main.

go \

 ./client/main.go

Then update the imports the same as before.

 import (

 ...

 “crypto/tls”

 “crypto/x509”

 “io/ioutil”

 “github.com/kelseyhightower/gls”

)

Next, load the client certificate and private key, the certificate
authority certificate, and configure TLS. The main differences
are to flip from authentication of the clients to authentication
of the server in the tls.Config: we’re not specifying ClientAuth,
since that’s a server side optional setting, and we’re specifying
the RootCAs instead of ClientCAs to indicate that we’re connect-
ing out and authenticating the server instead of being connected
to and authenticating the client.

 cert, err := tls.LoadX509KeyPair(“certs/client.crt”,

 “certs/client.key”)

 if err != nil {

 log.Fatal(err)

 }

 caCert, err := ioutil.ReadFile(“certs/CA.crt”)

 if err != nil {

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

 conf := &tls.Config{

 Certificates: []tls.Certificate{cert},

 RootCAs: caCertPool,

 }

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  65

COLUMNS
Golang: Creating and Using Certificates with TLS

Next, we connect to the server with the convenience function
tls.Dial, and pass the returned net.Conn to rpc.NewClient. In the
same way as encryption and authentication are transparent on
the server, this is transparent to net/rpc on the client.

 conn, err := tls.Dial(“tcp”, “localhost:8080”, conf)

 if err != nil {

 log.Fatal(err)

 }

 client := rpc.NewClient(conn)

Build the client, and you should now have a fully encrypted and
authenticated gls client:

 $ go build -o glss client/main.go

Start up the server and, separately in another terminal, start up
the client:

 $./glssd

 # In another terminal

 $./glss ~

Conclusion
At the end of this, we have protected the gls connection with
mutual TLS authentication. In addition, we’ve relied on the
power of the golang interface to only make minimal changes to
the original program to enable secure communication.

References
[1] K. Hightower, “Modern System Administration with Go
and Remote Procedure Calls (RPC),” ;login:, vol. 41, no. 1
(Spring 2016), pp. 63–67: https://www.usenix.org/publications​
/login/spring2016/hightower

[2] R. Perlman, “Blockchain: Hype or Hope?” ;login:, vol. 42, no.
2 (Summer 2017): https://www.usenix.org/publications/login​
/summer2017/perlman.

[3] Source code for glss: https://github.com/cmceniry/login-glss.

[4] Let’s Encrypt: https://letsencrypt.org.

[5] Go Doc on PrivateKey: https://godoc.org/crypto/rsa​
#PrivateKey.

[6] Go Doc on x509: https://godoc.org/crypto/x509#Certificate.

[7] DER encoding: https://en.wikipedia.org/wiki/X.690#DER​
_encoding.

https://www.usenix.org/publications/login/spring2016/hightower
https://www.usenix.org/publications/login/spring2016/hightower
https://www.usenix.org/publications/login/summer2017/perlman
https://www.usenix.org/publications/login/summer2017/perlman
https://github.com/cmceniry/login-glss
https://letsencrypt.org
https://godoc.org/crypto/rsa#PrivateKey
https://godoc.org/crypto/rsa#PrivateKey
https://godoc.org/crypto/x509#Certificate
https://en.wikipedia.org/wiki/X.690#DER_encodi
https://en.wikipedia.org/wiki/X.690#DER_encodi

