
66    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS

Flipping Out in Computer Science
M A R G O S E L T Z E R

For a while, every conversation about education seemed to lead to the
term MOOC (massive open online course). The hype around such
courses seems to have died down to some extent, but MOOCs still

exist and are largely good things, even if they have not fulfilled the promise
of educating the world. However, there has been an unanticipated side effect
to the (forgive me here) MOOC-ification of courses. We suddenly find our-
selves in possession of some really high-quality teaching materials. What
else might we do with such assets? I’d like to make the point that the wealth
of online material opens up the possibility that those of us in the education
business can undertake experiments in education that lead to deeper learn-
ing. In this article, I’ll focus on the flipped classroom.

In 2013, I began revising all my undergraduate courses so that I could teach them in a
flipped style (my graduate courses are typically research seminars, so in some sense, they
are already flipped). But what is flipping? The high-level idea is that rather than spending
class time absorbing information and then practicing use of the information at home, we
flip those two activities around. Students use prepared materials at home for first exposure
to new concepts and then come to class and work in small groups to practice applying those
concepts.

I had been intrigued by the idea of flipping for a long time but hadn’t quite figured out how to
apply it to my own courses. My problem sets are large monolithic projects, not something on
which one can make meaningful progress in a class period. So while I could easily imagine
preparing materials for them to review at home, what would I have them do in class?

By pondering that question, I realized that one of the biggest challenges students face in
programming courses is connecting new concepts to the programming tasks we give them.
Maybe I could use in-class time to more effectively connect conceptual material to program-
ming pragmatics, so students would not have to struggle with the question of how to get
started.

My first experience flipping a course was with my (insanely time-consuming) operating sys-
tems course. Students report spending 30 hours per week completing the long but rewarding
problem sets—students start with a simple operating system kernel and build user-level pro-
cesses, a virtual memory system, and a journaling file system. I blogged my first experience
flipping it here: http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping​
-blog-postings.html.

I ended up using three different styles of in-class exercises: gaining familiarity with the
course software, completing problems that demonstrate mastery of the material presented,
and engaging with open-ended design problems. I’ll give short examples of each of these
approaches.

Margo Seltzer is the Herchel
Smith Professor of Computer
Science and the Faculty
Director for the Center for
Research on Computation and

Society in Harvard’s John A. Paulson School
of Engineering and Applied Sciences. Her
research interests are in systems, construed
quite broadly: systems for capturing and
accessing provenance, file systems, databases,
transaction processing systems, storage
and analysis of graph-structure data, new
architectures for parallelizing execution, and
systems that apply technology to problems in
health care. She was a co-founder and CTO of
Sleepycat Software, the makers of Berkeley DB,
and is now an Architect at Oracle Corporation.
She is a past President of the USENIX Board of
Directors. She is recognized as an outstanding
teacher and mentor, having received the
Phi Beta Kappa teaching award in 1996, the
Abrahmson Teaching Award in 1999, and
the Capers and Marion McDonald Award for
Excellence in Mentoring and Advising in 2010.
Dr. Seltzer received an AB degree in applied
mathematics from Harvard/Radcliffe College
in 1983 and a PhD in computer science from
the University of California, Berkeley, in 1992.
margo@eecs.harvard.edu

http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping-blog-postings.html
http://mis-misinformation.blogspot.com/2013/08/an-index-to-my-flipping-blog-postings.html

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  67

COLUMNS
Flipping Out in Computer Science

Infrastructure
Traditionally, the first assignment in the course includes
instructions on how students acquire the course software,
install a virtual machine, configure and build a kernel, attach
the debugger to a running kernel, etc. Small glitches in this pro-
cess can result in students wasting a lot of time without learn-
ing much. Instead, I had them get their hypervisor licenses and
install the course VM as pre-class work and then used class time
to let them config and build their first kernel and complete some
debugging exercises.

There were a number of positive outcomes from this structure.
First, if students encountered any problems, we fixed them
within a few minutes rather than having students beat their
heads against the wall for hours. Second, it’s actually pretty
exciting to build your first kernel and watch it run. We got to
all experience that together, so by the end of class there was
a shared sense of accomplishment. Third, while we always
encourage students to read code (and we assign them code-read-
ing questions), as we wandered around the room interacting with
the groups, we could ask questions that required that they look at
code and could then gently walk them through how to approach a
new code base.

Problem Solving with Virtual Memory
It’s pretty easy to assume that once you’ve explained the
four-level page table structure of the x86, students would then
understand how address translation works. You would, however,
be wrong.

Historically, when I taught VM, I would have the class “play
MMU” and perform address translation one step at a time, hav-
ing each student contribute something. This wasn’t bad, but a lot
of things fall through the cracks. With flipping, after introduc-
ing students to the concept of virtual memory and the x86 VM
system, it was easy to create short problems that let small groups
of students “play MMU” and translate addresses, draw page
tables, populate the page tables, deduce what page faults really
are, experience a segmentation violation from the point of the
MMU, etc. Instead of each student contributing a tiny piece (and
sleeping through the rest of the discussion), every student was
exposed to every operation; by the end of class it was pretty clear
that there was a much more uniform and deep understanding of
what was going on.

Design Exercises
As the semester progresses in my operating systems classes,
more of the conceptual material involves helping students
develop the intuition and skills to design software and make
tradeoffs. Prior to flipping, I would always present alternatives
and let the class come up with the advantages and disadvantages
of the different approaches. Of course, the five students who

knew exactly what was going on were the ones who would pretty
much answer all the questions no matter how much I cajoled the
rest of the class and tried not to call on the frequent contributors.
I converted these to small design exercises, requiring groups of
two, three, or four students to assess tradeoffs, and then we’d
come together as a class to compare answers.

As a result, everyone felt they could contribute. Even if they
hadn’t been entirely comfortable with the material, after
discussing it with their peers for 10 or 15 minutes, they usually
could effectively compare their conclusions with those of other
groups. I’ve done a large variety of different activities around
this theme ranging from peripatetic design reviews (when the
class was small), to design debates, to collaborative analyses.
One former student reports that she uses the skills learned in
these exercises every day in her job.

I’m completely hooked on flipping at this point. I distilled the
advantages I see in the approach into the following 10 bullet points:

1.	 It’s good for an old dog to learn new tricks. This is really about
making sure your teaching doesn’t get stale. It’s way too easy to
keep teaching the same thing over and over again. Whether you
use new pedagogy, new technological breakthroughs, or just
good self-discipline, it’s important to keep classes fresh.

2.	 Flipping lets me spend time with those students for whom the
material is most challenging. This is so obvious in retrospect,
but so exhilarating in practice. I have always run a relatively in-
teractive class, but for the most part, the students who ask and
answer questions in class are the ones who need you least—
they are typically the most confident and are not struggling to
understand the material. The silent ones, meanwhile, are fre-
quently struggling, and the time spent helping these students in
small groups during class time is incredibly useful.

3.	 Learning takes place by doing, not by listening to me. There are
a lot of different styles of hands-on learning, but I think this
point cannot be emphasized enough. Learning is not just the
process of transferring information from the teacher to stu-
dents; learning is about gaining new information and knowing
how to use it, and the latter requires practice.

4.	 Teaching assistant engagement is critical. We call our teach-
ing assistants “teaching fellows,” or TFs for short. Flipping
effectively requires a good staff that is comfortable engaging
with students, walking them through problems, and posing the
right questions. I am extraordinarily fortunate to have a truly
amazing and dedicated teaching staff.

5.	 It takes a lot of effort to come up with effective in-class work.
It’s important that the in-class exercises or problems relate
both to the concepts the students are learning and to the
homework or problem sets they will be doing. Designing these
exercises so they can be completed in the time allotted and add
real value to the course is demanding.

68    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

COLUMNS
Flipping Out in Computer Science

6.	 Pre-class Web forms are AWESOME. They allow me to engage
with students in an entirely different way and to gather lots of
interesting data. This is perhaps the best surprise of all! I used
Google Forms to have students submit answers to the pre-class
questions. This created a mechanism I could use to obtain all
sorts of useful information, including how things were going in
partnerships, how much time people were spending on various
parts of the assignment, what was working for students, what
wasn’t working, etc. Once you have students regularly filling
out forms, they will answer anything you put there, and you can
use that to make the class better. Score!

7.	 My operating systems course, CS161, is even more time inten-
sive than I thought. I had been saying 20 hours per week for
decades; when the going gets rough, students were regularly
reporting 30-hour weeks. Oops.

8.	 It would be useful to help students learn what it really means to
design something. Software design is really hard! We spend a
lot of time in class doing small group design exercises—I could
imagine developing an entire course around this idea.

9.	 Flipping is a great equalizer when students enter with different
experience levels or exposure to different topics. It’s relatively
easy to provide supplementary material as pre-class work, so
that students who have gaps in their background can catch up.

10.	Fully integrated and coordinated materials take real effort but
pay off tremendously. This should be a no-brainer, but thinking
deeply about the relationship between the videos I prepared,
the exercises we completed in class, and the problem sets was
time well spent.

