
74  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

REST API Design Rulebook
Mark Massé
O’Reilly Media Inc., 2012, 94 pages
ISBN 978-1-449-31050-9

You would be right in assuming that any book with the word
“rulebook” in the title would express an opinion. Massé certainly
doesn’t hold back, but that seems to be a trait of REST advocates
in general.

At under 100 pages, Massé’s book packs quite a lot into a little
space. It is really presented as a list of one-line rule statements
with a matching brief explanation. Each is meant to address
one of the common questions raised when designing a REST
protocol.

The first three sections treat the interactions between the client
and the server, detailing how each uses the HTTP protocol fea-
tures to communicate and interpret the intent of the other. The
fourth section describes how to add metadata that allows the
self-discovery that is characteristic of REST protocols.

I was struck by how little the rules had to do with the formatting
of the content. The only rules that deal directly with content are
those that state that the payload must use a standard structured
data format such as JSON or XML. The rest of the rules describe
how to make use of the simple CRUD (Create, Read, Update,
Delete) operations that HTTP offers to define the more complex
interactions that a rich application protocol needs.

Massé notes that the contents of these first four sections are
based largely on consensus reached over time among the devel-
oper community. In the final two sections, he discusses rules for
data representation and for client-side concerns like authentica-
tion and applications with multi-origin data sources. The word-
ing of the rules here changes from “must” to “should.” Massé
indicates that these are his answers to the questions that remain
open, based on his experience.

This book was written in 2011, more than a decade after the pub-
lication of Roy Fielding’s PhD dissertation in 2000. Since then
REST has come to be the preeminent model for client-server
communications, replacing proprietary binary models and
earlier Web standards like SOAP and XML-RPC. While many
services claim to conform to the REST conventions, a close read
of this book will show that few really meet the full criteria.

When thinking about REST, people often focus on representing
the payload content using a structured data format. Many forget
that a major tenet of REST is that the relationships between the

different data objects must be included in the query responses.
Links and relationships must be discoverable by the client
without the need to code assumptions into the client-side logic.
Defining and presenting these relationships in the metadata of
a REST response requires a lot of thought and work on the part
of the server writer. Many applications that claim to be RESTful
take shortcuts on the protocol design, coding the relationships
into the client.

Massé correctly focuses on how to define and present these rela-
tionships. He understands that simply representing the content
as structured data is the easy part. He gives very little space
to how to write the code, though he does include a simple app
example in the final chapter.

In the end it may not matter if developers strictly adhere to the
REST guidelines, so long as the code works, but I suspect much
code could be improved after a few minutes spent with the
Rulebook.

CoreOS in Action
Matt Bailey
Manning Publications Inc., 2017, 178 pages
ISBN 978-1-61729-374-0

In the grand migration to software containers, there is a largely
overlooked component that I think deserves more attention: the
container host. The conventional OS distribution design is based
on old assumptions about how applications work and how they
will use OS underneath. Container hosts are designed with the
containerized application in mind: a minimal Linux install on a
read-only file system.

CoreOS began as a kind of customizable single-application
host distribution. Originally, CoreOS was designed for building
an image for each service as if it were an embedded system or
unikernel. The build system is based on Gentoo, and the code
base began as a variant of ChromeOS.

CoreOS itself didn’t get much attention until the advent of
Docker and the growth of containers. Creating custom images
with embedded applications required skill and specialized
knowledge, and there was little incentive for developers to
focus on those skills. Docker changed that by creating an easy,
consistent model for creating single-purpose images, with the
advantage of portability and a distribution infrastructure, the
container registry. Once CoreOS included the Docker runtime, it
became an ideal place to create distributed container services.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 75

BOOKS

Bailey packs a lot of information and many examples into a
slim book. In some ways this reflects what CoreOS is good at:
minimizing complexity (at least in some realms). The whole idea
of container hosts is that you don’t administer them in the same
way that you would a conventional host: you can’t install pack-
ages. Persistent storage must come from a shared resource. This
doesn’t mean that you don’t need to manage them or that your
applications will magically appear and work. For a sysadmin,
using container hosts means unlearning and relearning a lot.

The examples include short bits to create the container images,
to deploy CoreOS itself, and to configure the services that bind
the individual hosts into a cluster. I wish Bailey had spent a little
more time on the theory and internals of these services: etcd,
fleet, flannel. The code fragments and the callouts that explain
these services are clear and well presented, but a bit more on
how they work might make these samples easier to adapt to the
reader’s own purposes.

Bailey asks a lot of his readers because adopting CoreOS requires
thinking about applications in new ways. Only the first third of
the book is given to actually installing the OS and configuring
the clustering services. In the second section, Bailey shows how
to build applications that will be suited to the container environ-
ment. He does address legacy applications, but leaves it implicit
that they must be decomposed and migrated, not “forklifted” into
containers.

In the final section, Bailey talks about aspects of using CoreOS
in production. He shows a CoreOS deployment in AWS using
Cloud formation to describe the configuration and topology. He
closes with a brief discussion of what might be a taboo subject:
a container designed to allow the sysadmin access to the tools
they are used to having on a conventional host.

Container hosts are still in the shadows of the containers
themselves, but I think they should be given more light. CoreOS
in Action shines a light on the foundation. This might even be a
good path for introducing containers themselves.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp

USENIX Benefactors
Oracle VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki Fotosearch

Open Access Publishing Partner
PeerJ

