
10  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMSTxFS
Leveraging File-System Crash Consistency to Provide ACID
Transactions

Y I G E H U , Z H I T I N G Z H U , I A N N E A L , Y O U N G J I N K W O N , T I A N Y U C H E N G , V I J A Y
C H I D A M B A R A M , A N D E M M E T T W I T C H E L

Yige Hu is a PhD student at
the University of Texas at
Austin, under the supervision
of Professor Emmett Witchel.
Her research interests include

operating systems, storage, and heterogeneous
architecture. yige@cs.utexas.edu

Zhiting Zhu is a PhD student
at the University of Texas at
Austin, working with Emmett
Witchel. He is interested in
operating systems and security.

zhitingz@cs.utexas.edu

Ian Neal received his computer
science and electrical
engineering degrees from the
University of Texas at Austin in
2018. His undergraduate honors

thesis was on transaction file systems, and he
has also worked on other storage systems in
non-volatile RAM. He will be starting his PhD
program in the fall of 2018 at the University of
Michigan at Ann Arbor.
 ian.glen.neal@utexas.edu

Youngjin Kwon is a PhD
candidate at the University
of Texas at Austin under the
supervision of Professors
Emmett Witchel and Simon

Peter. His research interests lie in operating
systems, including file systems, emerging
storage and memory technologies, system
support for security, and virtualization. His
research has been recognized by VMware, and
he contributed an initial version of his research
work to VMware commercial hypervisor.
yjkwon@cs.utexas.edu

We introduce TxFS, a novel transactional file system that builds
upon a file system’s atomic-update mechanism such as journal-
ing. Although prior work has explored a number of transactional

file systems, TxFS has a unique set of properties: a simple API, portability
across different hardware, high performance, low complexity (by building
on the journal), and full ACID transactions. We port SQLite and Git to use
TxFS, and experimentally show that TxFS provides strong crash consistency
while providing equal or better performance.

Modern applications store persistent state across multiple files. Some applications split
their state among embedded databases, key-value stores, and file systems. Such applications
need to ensure that their data is not corrupted or lost in the event of a crash. Unfortunately,
existing techniques for crash consistency, such as logging or using atomic rename, result in
complex protocols and subtle bugs.

Transactions present an intuitive way to atomically update persistent state. Unfortunately,
building transactional systems is complex and error-prone, leading us to develop a novel
approach to building a transactional file system. We take advantage of a mature, well-tested
piece of functionality in the operating system: the file-system journal, which is used to
ensure atomic updates to the internal state of the file system. We use the atomicity and dura-
bility provided by journal transactions and leverage it to build ACID transactions available to
userspace transactions. Our approach greatly reduces the development effort and complexity
for building a transactional file system.

We introduce TxFS [4], a transactional file system that builds on the ext4 file system’s journ-
aling mechanism. We designed TxFS to be practical to implement and easy to use. TxFS has
a unique set of properties. It has a small implementation (5200 lines of code) by building on
the journal. It provides high performance, unlike various solutions that built a transactional
file system over a userspace database [3, 12]. It has a simple API (just wrap code in fs_tx_

begin() and fs_tx_commit()) compared to solutions like Valor [10] or TxF [8], which require
multiple system calls per transaction and can require the developer to understand imple-
mentation details like logging. It provides all ACID guarantees, unlike solutions such as CFS
[5] and AdvFS [11], which only offer some of the guarantees, and it also provides transactions
at the file level instead of at the block level, unlike Isotope [9], making several optimizations
easier to implement. Finally, TxFS does not depend on specific properties of the underlying
storage, unlike solutions such as MARS [2] and TxFlash [7].

We find that file system transactions lead naturally to a number of seemingly unrelated
file-system optimizations. For example, one of the core techniques from our earlier work,
separating ordering from durability [1], is easily accomplished in TxFS. Similarly, we find
TxFS transactions allow us to identify and eliminate redundant application I/O where
temporary files or logs are used to atomically update a file; when the sequence is simply
enclosed in a transaction and without any other changes, TxFS atomically updates the file,
maintaining functionality while eliminating the I/O to logs or temporary files, provided that
the temporary files and logs are deleted inside the transaction. As a result, TxFS improves

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 11

Tianyu Cheng received an MS
in computer science with high
honors from the University of
Texas at Austin in 2017. He is
interested in a wide range of

topics, including computer architecture and
graphics. He is currently working on GPU
architecture validation with Apple Inc.
tianyu.cheng@utexas.edu

Vijay Chidambaram is an
Assistant Professor in the
Computer Science Department
at the University of Texas
Austin. He works on distributed

systems, operating systems, and storage.
His work has resulted in patent applications
by VMware, Samsung, and Microsoft. His
research has won the SIGOPS Dennis M.
Ritchie Dissertation Award in 2016, Best Paper
Awards at FAST 2017 and 2018, and a Best
Poster at ApSys 2017. He was awarded the
Microsoft Research Fellowship in 2014 and
the University of Wisconsin-Madison Alumni
Scholarship in 2009. vijay@cs.utexas.edu

Emmett Witchel is a Professor
in Computer Science at the
University of Texas at Austin.
He received his doctorate from
MIT in 2004. He and his group

are interested in operating systems, security,
performance, and concurrency.
witchel@cs.utexas.edu

performance while simultaneously providing better crash-consistency semantics: a crash
does not leave messy temporary files or logs that need to be cleaned up.

To demonstrate the power and ease of use of TxFS transactions, we modify SQLite and Git
to incorporate TxFS transactions. We show that when using TxFS transactions, SQLite
performance on the TPC-C benchmark improves by 1.6x, and a microbenchmark that mim-
ics Android Mail obtains 2.3x better throughput. Using TxFS transactions greatly simplifies
Git’s code while providing crash consistency without performance overhead. Thus, TxFS
transactions increase performance, reduce complexity, and provide crash consistency.

We make the following contributions:

◆◆ We present the design and implementation of TxFS, a transactional file system for modern
applications built by leveraging the file-system journal (see “TxFS Design and Implementa-
tion,” below). We have made TxFS publicly available at https://github.com/ut-osa/txfs.

◆◆ We show that existing file system optimizations, such as separating ordering from durabil-
ity, can be effectively implemented for TxFS transactions (see “Accelerating Programming
Idioms with TxFS,” below).

◆◆ We show that real applications can be easily modified to use TxFS, resulting in better crash
semantics and significantly increased performance (see “Evaluation,” below).

Why Use File-System Transactions?
We describe the complexity of current protocols used by applications to update persistent
state and discuss a few case studies. We then describe the optimizations enabled by file-
system transactions.

How Applications Update State Today
Given that applications today do not have access to transactions, how do they consistently
update state to multiple storage locations? Even if the system crashes or power fails, applica-
tions need to maintain invariants across state in different files (e.g., an image file should
match the thumbnail in a picture gallery). Applications achieve this by using ad hoc protocols
that are complex and error-prone [6].

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

Figure 1: Different protocols used by applications to make consistent updates to persistent data

12  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

In this section, we show how difficult it is to implement seem-
ingly simple protocols for consistent updates to storage. There
are many details that are often overlooked, like the persistence
of directory contents. With current storage technologies, these
protocols must sacrifice performance to be correct because
there is no efficient way to order storage updates. Currently,
applications use the fsync() system call to order updates to
storage [1]; since fsync() forces data to be durable, the latency of
a fsync() call varies from a few milliseconds to several seconds.
As a result, applications do not call fsync() at all the places in the
update protocol where it is necessary, leading to severe data loss
and corruption [6].

We now describe two common techniques used by applications
to consistently update storage, illustrated in Figure 1.

Atomic rename. The atomic rename approach is widely used
by editors, such as Emacs and Vim, and by GNOME applications
that need to atomically update dot configuration files. Protocol
(a) illustrates the approach: the application writes new data to
a temporary file, persists it with an fsync() call, updates the
parent directory with another fsync() call, and then renames
the temporary file over the original file, effectively causing the
directory entry of the original file to point to the temporary
file instead. Finally, to ensure that the original file has been
unlinked and deleted properly, the application calls fsync() on
the parent directory.

Logging. Protocol (b) shows another popular technique for
atomic updates, logging. In the write-ahead version of logging,
the log file is written with new contents, and both the log file
and the parent directory (with the new pointer to the log file) are
persisted. The application then updates and persists the original
file; the parent directory does not change during this step.
Finally, the log is unlinked, and the parent directory is persisted.

The situation becomes more complex when applications store
state across multiple files. Protocol (c) illustrates how the
Android Mail application adds a new email with an attachment.
The attachment is stored on the file system, while the email
message (along with metadata) is stored in the database (which
for SQLite, also resides on the file system). Since the database
has a pointer to the attachment (i.e., a file name), the attachment
must be persisted first. Persisting the attachment requires two
fsync() calls (to the file and its containing directory) [6]. It then
follows a protocol similar to protocol (b). Android mail uses six
fsync() calls to persist a single email with an attachment.

Removing fsync() calls in any of the presented protocols will
lead to data loss or corruption. For instance, in protocol (b), if
the parent directory is not persisted with an fsync() call, the log
file may disappear after a crash. If the application crashes in the
middle of updating the original file, it will not be able to recover
using the log. Many application developers avoid fsync() calls

due to the resulting decrease in performance, leading to severe
bugs that cause loss of data.

In summary, safe update protocols for stable storage are complex
and low performance. System support for file-system transac-
tions will enable high performance for these applications.

Application Case Studies
We present two examples of applications (in addition to the
previously described Android Mail) that struggle to obtain
crash consistency using primitives available today. Several
applications store data across the file system, key-value stores,
and embedded databases such as SQLite. While all of this data
ultimately resides in the file system, their APIs and performance
constraints are different, and consistently updating state across
these systems is complex and error-prone.

Apple iWork and iLife. Analysis of the storage behavior of
Apple’s home-user desktop applications finds that applica-
tions use a combination of the file system, key-value stores,
and SQLite to store data. iTunes uses SQLite to store metadata
separately from songs similar to the Android Mail application.
Apple’s Pages application uses a combination of SQLite and
key-value stores for user preferences and other metadata (two
SQLite databases and 128 .plist key-value store files). Similar to
Android Mail, these applications use fsync() to order updates
correctly.

Version control systems. Git is a widely used version control
system. The git commit command requires two file-system
operations to be atomic: a file append (logs/HEAD) and a file
rename (to a lock file). Failure to achieve atomicity results in
data loss and a corrupted repository [6].

For these applications, transactional support would lead directly
to more understandable and more efficient idioms (rather than
approaches like atomic rename used today). It is difficult for a
user-level program to efficiently provide crash-consistent trans-
actional updates using the POSIX file-system interface.

Optimizations Enabled by File-System Transactions
A transactional file-system interface enables a number of inter-
esting file-system optimizations:

Eliminate temporary durable files. A number of applications
such as Vim, Emacs, Git, and LevelDB provide reasonable crash
semantics using the atomic rename approach. But these applica-
tions can simply enclose writes inside a transaction and avoid
making an entire copy of the file. For large files, the difference
in performance can be significant. Additionally, transactions
eliminate the clutter of temporary files orphaned by a crash.

Group commit. Transactions can buffer file-system updates
in memory and submit updates to storage as a batch. Batching

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 13

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

updates enables efficient allocation of file-system data struc-
tures and better device-level scheduling. Without user-provided
transaction boundaries, the file system provides uniform, best-
effort persistence for all updates.

Eliminate redundant I/O within transactions. Workloads
often contain redundancy; for example, files are often updated
several times at the same offset, or a file is created, written, read,
and unlinked. Because the entire transaction is visible to the file
system at commit time, it can eliminate redundant work.

Consolidate I/O across transactions. Transactions often
update data written by prior transactions. When a workload
anticipates data in its transaction will be updated by another
transaction shortly, it can prioritize throughput over latency.
Committing a transaction with a special flag allows the system
to delay a transaction commit, anticipating that the data will be
overwritten, and then it can be persisted once instead of twice.
Optimizing multiple transactions, especially from different
applications, is best done by the operating system, not by an
individual application.

Separate ordering from durability. When ending a trans-
action, the programmer can specify whether the transaction
should commit durably. If so, the call blocks until all updates
specified by the transaction have been written to a persistent
journal. If we commit non-durable transaction A and then
start non-durable transaction B, then A is ordered before B, but
neither is durable. A subsequent transaction (e.g., C) can specify
that it and all previous transactions should be made durable.
Thus, we can use transactions to gain the benefit of splitting
sync into ordering sync (osync) and durability sync (dsync) [1].

TxFS Design and Implementation
TxFS avoids the pitfalls from earlier transactional file systems.
It has a simple API, provides complete ACID guarantees, does
not depend on specific hardware, and takes advantage of the file-
system journal and how the kernel is implemented to achieve a
small implementation.

API
A simple API was one of the key goals of TxFS. Thus, TxFS
provides developers with only three system calls: fs_tx_begin(),
which begins a transaction; fs_tx_commit(), which ends a
transaction and attempts to commit it; and fs_tx_abort(),
which discards all file-system updates contained in the current
transaction. On commit, all file-system updates in the TxFS
transaction are persisted in an atomic fashion—after a crash,
users see all of the transaction updates or none of them. This
API significantly simplifies application code and provides clean
crash semantics, since temporary files or partially written logs
will not need to be cleaned up after a crash.

fs_tx_commit() returns a value indicating whether the transaction
was committed successfully, or if it failed, why it failed. A transac-
tion can fail for several reasons, including a conflict with another
transaction or not enough storage resources. Depending on the
error code, the application can choose to retry the transaction.

A user can surround any sequence of file-system-related system
calls with fs_tx_begin() and fs_tx_commit(), and the system will
execute those system calls in a single transaction. This interface is
easy for programmers to use and makes it simple to incrementally
deploy file-system transactions into existing applications. In con-
trast, some transactional file systems, such as Window’s TxF and
Valor, have far more complex, difficult-to-use interfaces.

Figure 2: TxFS relies on ext4’s own journal for atomic updates and maintains local copies of in-memory data structures, such as inodes, directory entries,
and pages, to provide isolation guarantees. At commit time, the local operations are made global and durable.

14  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

TxFS isolates file-system updates only. The application is still
responsible for synchronizing access to its own user-level data
structures. A transactional file system is not intended to be
an application’s sole concurrency control mechanism; it only
coordinates file-system updates that are difficult to coordinate
without transactions.

Atomicity and Durability
Most modern Linux file systems have an internal mechanism for
atomically updating multiple blocks on storage. These mecha-
nisms are crucial for maintaining file-system crash consistency,
and thus have well-tested and mature implementations. TxFS
takes advantage of these mechanisms to obtain three of the
ACID properties: atomicity, consistency, and durability.

TxFS builds upon the ext4 file system’s journal. The journal
provides the guarantee that each journal transaction is applied
to the file system in an atomic fashion. TxFS can be built upon
any file system with a mechanism for atomic updates such as
copy-on-write. TxFS guarantees atomicity by ensuring that all
operations in a user transaction are added to a single local jour-
nal transaction, and it persists the journal transaction to ensure
durability.

Isolation and Conflict Detection
Although the ext4 journal provides atomicity and durability,
it does not provide isolation. To provide isolation, TxFS has to
ensure that all operations performed inside a transaction are not
visible to other transactions or the rest of the system until com-
mit time. Adding isolation for file-system data structures in the
Linux kernel is challenging because a large number of functions
all over the kernel modify file-system data structures without
using a common interface. In TxFS, we tailor our approach to
isolation for each data structure to simplify the implementation.

Split file-system functions. System calls such as write() and
open() execute file-system functions that often result in alloca-
tion of file-system resources such as data blocks and inodes.
TxFS splits such functions into two parts: file-system allocation
and in-memory structures. TxFS moves file-system allocation
to the commit point. In-memory changes execute as part of the
system call, and they are kept private to the transaction.

Transaction-private copies. TxFS makes transaction-private
copies of all kernel data structures modified during the trans-
action. File-system-related system calls inside a transaction
operate on these private copies, allowing transactions to read
their own writes. For example, directory entries updated by the
transaction are modified to point to a local inode that maintains
a local radix tree with locally modified pages. In case of abort,
these private copies are discarded; in case of commit, these
private copies are carefully applied to the global state of the file
system in an atomic fashion.

Two-phase commit. TxFS transactions are committed using
a two-phase commit protocol. TxFS first obtains a lock on all
relevant file-system data structures using a total order that fol-
lows the existing file-system conventions, so that deadlocks are
avoided.

Conflict detection. Conflict detection is a key part of providing
isolation. Since allocation-related structures such as bitmaps
are not modified until commit time, they cannot be modified by
multiple transactions at the same time and do not give rise to
conflicts; as a result, TxFS avoids false conflicts involving global
allocation structures.

Conflict detection is challenging because many file-system
data structures are modified all over the Linux kernel without a
standard interface. TxFS eagerly detects conflicts on data pages,
taking advantage of the structured kernel API for page manage-
ment. It lazily detects conflicts on directory entries and file
metadata structures, quickly detecting at commit time whether
these structures have been updated.

Summary. Figure 2 shows how TxFS uses ext4’s journal
for atomically updating operations inside a transaction and
maintaining local state to provide isolation guarantees. File
operations inside a TxFS transaction are redirected to the trans-
action’s locally copied data structures, hence they do not affect
the file system’s global state, while being observable by subse-
quent operations in the same transaction. Only after a TxFS
transaction finishes its commit (by calling fs_tx_commit()) will
its modifications be globally visible.

Limitations
TxFS has two main limitations. First, the maximum size of a
TxFS transaction is limited to one-fourth the size of the journal
(the maximum journal transaction size allowed by ext4). We
note that the journal can be configured to be as large as required.
Multi-gigabyte journals are common today. Second, although
parallel transactions can proceed with ACID guarantees, each
transaction can only contain operations from a single process.
Transactions spanning multiple processes are future work.

 Accelerating Programming Idioms with TxFS
We explore a number of programming idioms where a trans-
actional API can improve performance because transactions

Workload FS TX

Create/unlink/sync 37.35s 0.28s (133x)

Logging  5.09s 4.23s (1.20x)

Ordering work  2.86it/s 3.96it/s (1.38x)

Table 1: Programming idioms sped up by TxFS transactions. Performance
is measured in seconds (s) and iterations per second (it/s). Speedups for
the transaction case are reported in parentheses.

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 15

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

provide the file system a sequence of operations that can be
optimized as a group. Whole transaction optimization can result
in dramatic performance gains because the file system can
eliminate temporary durable writes (such as the creation, use,
and deletion of a log file). In some cases, we show that benefits
previously obtained by new interfaces (such as osync [1]) can be
obtained easily with transactions.

Eliminating File Creation
When an application creates a temporary file, syncs it, uses it,
and then unlinks it (e.g., logging shown in Figure 1b), enclosing
the entire sequence in a transaction allows the file system to
optimize out the file creation and all writes while maintaining
crash consistency.

The create/unlink/sync workload spawns six threads (one per
core) where each thread repeatedly creates a file, unlinks it,
and syncs the parent directory. Table 1 shows that placing the
operation within a transaction increases performance by 133x
because the transaction completely eliminates the workload’s
I/O. While this test is an extreme case, we next look at using
transactions to automatically convert a logging protocol into a
more efficient update protocol.

Eliminating Logging I/O
Figure 1b shows the logging idiom used by modern applications
to achieve crash consistency. Enclosing the entire protocol
within a transaction allows the file system to transparently
optimize this protocol into a more efficient direct modification.
During a TxFS transaction, all sync-family calls are functional
NOPs. Because the log file is created and deleted within the
transaction, it does not need to be made persistent on transac-
tion commit. Eliminating the persistence of the log file greatly
reduces the amount of user data but also file system metadata
(e.g., block and inode bitmaps) that must be persisted.

Table 1 shows execution time for a microbenchmark that writes
and syncs a log, and a version that encloses the entire protocol
in a single TxFS transaction. Enclosing the logging protocol
within a transaction increases performance by 20% and cuts the
amount of I/O performed in half because the log file is never per-
sisted. Rewriting the code increases performance by 55% (3.28
seconds, not shown in the table). In this case, getting the most

performance out of transactions requires rewriting the code
to eliminate work that transactions make redundant. But even
without a programmer rewrite, just adding two lines of code
to wrap a protocol in a transaction achieves 47% of the perfor-
mance of doing a complete rewrite.

Optimizing SQLite logging with TxFS. Just enclosing the
logging activity of SQLite in its default mode (Rollback) within a
transaction increases performance for updates by 14%. Modi-
fying the code to eliminate the logging work that transactions
make redundant increases the performance for updates to 31%,
in part by reducing the number of system calls 2.5x.

Separating Ordering and Durability
Table 1 shows throughput for a workload that creates three 10
MB files and then updates 10 MB of a separate 40 MB file. The
user would like to create the files first, then update the data file.
This type of ordering constraint often occurs in systems like Git
that create log files and other files that hold intermediate state.

The first version uses fsync() to order the operations, while the
second uses transactions that allow the first three file create
operations to execute in any order, but they are all serialized
behind the final data update transaction using flags to fs_tx_

begin() and fs_tx_commit(). The transactional approach has
38% higher throughput because the ordering constraints are
decoupled from the persistence constraints. Our previous work
that first distinguished ordering from persistence required
adding modified sync system calls [1], but TxFS can achieve the
same result with transactions.

Evaluation
We evaluate the performance and durability guarantees of
TxFS on a variety of microbenchmarks and real workloads. The
microbenchmarks help point out how TxFS achieves specific
design goals. The larger benchmarks validate that transactions
provide stronger crash semantics and improved performance
for a variety of large applications with minimal porting effort.
For example, we modified SQLite to use TxFS transactions
and measured its performance improvement. Table 2 presents
a summary of the different experiments used to evaluate TxFS
and the speedup obtained in each experiment. In the Git experi-
ment, TxFS provides strong crash-consistency guarantees (no
need for post-crash manual Git recovery) without degrading per-
formance. Note that if not explicitly mentioned, all our baselines
run on ext4 in its default ordered journaling mode. For more
details please refer to the original publication [4].

Conclusion
We present TxFS, a transactional file system built with lower
development effort than previous systems by leveraging the file-
system journal. TxFS is easy to develop, is easy to use, and does

Experiment TxFS Benefit Speed

Single-threaded SQLite Faster I/O path, less sync 1.31x

TPC-C Faster I/O path, less sync 1.61x

Android Mail Cross abstraction tx 2.31x

Git Better crash semantics 1.00x

Table 2: The table summarizes the micro- and macro-benchmarks used to
evaluate TxFS and the speedup obtained in each experiment.

16  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SYSTEMS
TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

not have significant overhead for transactions. We show that
using TxFS transactions increases performance significantly
for a number of different workloads.

Transactional file systems have not been successful for a variety
of reasons. TxFS shows that it is possible to avoid the mistakes
of the past and build a transactional file system with low com-

plexity. We believe that file-system transactions, given their
power and flexibility, should be examined again by file-system
researchers and developers. Adopting a transactional interface
would allow us to borrow decades of research on optimizations
from the database community while greatly simplifying the
development of crash-consistent applications.

References
[1] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Optimistic Crash Consistency,” in
Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pp. 228–243: http://research.cs.wisc.edu
/adsl/Publications/optfs-sosp13.pdf.

[2] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swan-
son, “From ARIES to MARS: Transaction Support for Next-
Generation, Solid-State Drives,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP ’13), pp.
197–212: https://cseweb.ucsd.edu/~swanson/papers/SOSP2013
-MARS.pdf.

[3] N. H. Gehani, H. V. Jagadish, and W. D. Roome, “OdeFS:
A File System Interface to an Object-Oriented Database,” in
Proceedings of the 20th Very Large Databases Conference (VLDB
1994), pp. 249–260: http://www.vldb.org/conf/1994/P249.pdf.

[4] Y. Hu, Z. Zhu, I. Neal, Y. Kwon, T. Cheng, V. Chidambaram,
and E. Witchel, “TxFS: Leveraging File-System Crash Consis-
tency to Provide ACID Transactions,” 2018 USENIX Annual
Technical Conference (USENIX ATC ’18).

[5] C. Min, W.-H. Kang, T. Kim, S.-W. Lee, and Y. I. Eom, “Light-
weight Application-Level Crash Consistency on Transactional
Flash Storage,” in Proceedings of the 2015 USENIX Annual
Technical Conference (USENIX ATC ’15), pp. 221–234: https://
www.usenix.org/system/files/conference/atc15/atc15-paper
-min.pdf.

[6] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “All File
Systems Are Not Created Equal: On the Complexity of Craft-
ing Crash-Consistent Applications,” in Proceedings of the 11th
Symposium on Operating Systems Design and Implementation

(OSDI ’14), pp. 433–448: https://www.usenix.org/system/files
/conference/osdi14/osdi14-paper-pillai.pdf.

[7] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transac-
tional Flash,” in Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’08), pp.
147–160: https://www.usenix.org/legacy/events/osdi08/tech
/full_papers/prabhakaran/prabhakaran.pdf.

[8] M. E. Russinovich, D. A. Solomon, and J. Allchin, Microsoft
Windows Internals: Microsoft Windows Server 2003, Windows
XP, and Windows 2000, 4th edition (Microsoft Press, 2005).

[9] J.-Y. Shin, M. Balakrishnan, T. Marian, and H. Weather-
spoon, “Isotope: Transactional Isolation for Block Storage,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), pp. 23–37: https://www.usenix.org
/system/files/conference/fast16/fast16-papers-shin.pdf.

[10] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok, and C. P.
Wright, “Enabling Transactional File Access via Lightweight
Kernel Extensions,” in Proceedings of the 7th USENIX Confer-
ence on File and Storage Technologies (FAST ’09), pp. 29–42:
https://www.usenix.org/legacy/event/fast09/tech/full_papers
/spillane/spillane.pdf.

[11] R. Verma, A. A. Mendez, S. Park, S. S. Mannarswamy, T.
Kelly, and C. B. Morrey III, “Failure-Atomic Updates of Applica-
tion Data in a Linux File System,” in Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST ’15),
pp. 203–211: https://www.usenix.org/system/files/conference
/fast15/fast15-paper-verma.pdf.

[12] C. P. Wright, R. Spillane, G. Sivathanu, E. Zadok, “Extend-
ing ACID Semantics to the File System,” ACM Transactions on
Storage (TOS), vol. 3, no. 2 (May 2007), pp. 1–40: http://www.fsl
.cs.stonybrook.edu/docs/amino-tos06/amino.pdf.

http://research.cs.wisc.edu/adsl/Publications/optfs-sosp13.pdf
http://research.cs.wisc.edu/adsl/Publications/optfs-sosp13.pdf
https://cseweb.ucsd.edu/~swanson/papers/SOSP2013-MARS.pdf
https://cseweb.ucsd.edu/~swanson/papers/SOSP2013-MARS.pdf
http://www.vldb.org/conf/1994/P249.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-min.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-min.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-min.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-pillai.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-pillai.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/prabhakaran/prabhakaran.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/prabhakaran/prabhakaran.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-shin.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-shin.pdf
https://www.usenix.org/legacy/event/fast09/tech/full_papers/spillane/spillane.pdf
https://www.usenix.org/legacy/event/fast09/tech/full_papers/spillane/spillane.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
http://www.fsl.cs.stonybrook.edu/docs/amino-tos06/amino.pdf
http://www.fsl.cs.stonybrook.edu/docs/amino-tos06/amino.pdf

