
38  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SRE/SYSADMINCapacity Engineering
An Interview with Rick Boone

R I K F A R R O W

Rick Boone is currently
a Senior Engineer on the
Capacity Engineering team
at Uber, where he focuses
on modeling and forecasting

Uber’s capacity needs. He has been at Uber
for 3.5 years, where he primarily worked in
SRE (Site Reliability Engineering). Previously,
Rick worked at Facebook for three years as
a Production Engineer and, before that, at a
number of tech startups in Los Angeles. In his
free time, he loves traveling, swimming, and
gymnastics. boone@uber.com

Rik is the editor of ;login:. rik@
usenix.org

W hen I heard Rick Boone’s talk at SREcon18 Americas, I was
immediately struck by his approach. While capacity planning is
really an art, relying partially on past behavior but just as much

on intuition, Rick described uncovering the best metric for reliably predict-
ing capacity as needed.

Uber’s services run on their own hardware, and their goal is to always have sufficient capac-
ity without ever having either too much or a shortage that will hurt business. Rick’s approach
[1] used machine learning to help pick out the appropriate metric and mathematically predict
its impact on a service’s capacity needs. You can watch the video of his talk to learn the
approach used. In this interview, Rick discusses why Uber doesn’t use capacity planning and
instead relies on capacity engineering.

Rik Farrow: What’s wrong with capacity planning?

Rick Boone: For those who are concerned with availability and reliability of services or
platforms, service owners, Production Engineers, or SREs, capacity planning is typically one
of the fuzziest and least understood parts of their job. When we speak of capacity planning,
we’re aiming for a “just right” amount of resources allocated for a service, which will allow
that service to run both efficiently (i.e., “not using too many resources”) and reliably (i.e., “not
using too few resources”), even in the face of unexpected surges of traffic. This can be pretty
difficult to achieve for a multitude of reasons, especially in a fast-moving, complex environ-
ment with lots of interactions between hundreds or thousands of services.

Typically, capacity planning involves a fair amount of back-of-the-napkin math and fuzzy
methods that differ from service to service. Knowledge of what drives the service’s needs
and usage (i.e., “demand”) is required, as is knowledge of how that demand will grow and
change. Knowledge of the service’s dependencies and operational particulars is also needed
(e.g., “Does it speak to a database?”), along with an understanding of how those details affect
the service’s ability to serve its demand (and how it consumes resources). Once all of that
is known and understood, the planner then needs to determine the best way to calculate
expected demand in the future and then extrapolate expected needs from that.

All of these things tend to be very local and service-specific pieces of information, what I like
to call “Jedi” knowledge—intuition which service owners tend to gain over time—which dif-
fer wildly across an engineering ecosystem. For instance, a search service will grow at a very
different trajectory, and have very different resource needs, than a payment service.

You can start to see why traditional capacity planning can be so difficult across an engineer-
ing ecosystem. Its methods are typically not repeatable from one service to another, nor are
they scalable beyond one or two teams. If one person or team does manage to use a method
that is successful for their service, their skills and insight will not necessarily transfer.
Methodology and process becomes wildly inconsistent, leading to confusion and, typically,
overallocation and wastage of resources. As teams become less confident that they can capac-
ity plan effectively, they begin to simply “throw hardware” at the problem and move on to more
solvable things. Often, empirical data or mathematical reasoning is left out of the process,
leading to further lack of repeatability and understanding. And even when data and analysis/
mathematics are used, there is still a very worrying lack of confidence or certainty delivered

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 39

SRE/SYSADMIN
Capacity Engineering: An Interview with Rick Boone

with the results. If the “plan” is to go wrong, it is unknown by
how much it will go wrong. Either it will work or it won’t. This
leaves stakeholders and dependent services with an inability to
make informed decisions or tradeoffs concerning the service.

Beyond the issues of fuzzy methodology, there are also problems
that arise from the nature of software and infrastructure. At
Uber, like most large-scale engineering shops, we release a lot of
code and changes to a lot of services on a lot of servers through-
out the day. This all adds up to an ever-changing, complex, and
highly coupled environment, the entirety of which is difficult
for humans to consider when predicting future usage, especially
months in the future.

RF: How is capacity prediction different?

RB: With capacity prediction, we aim to remove all of the fuzzi-
ness and hand-waving from our understanding of capacity usage
and needs. We do this by applying statistical and mathematical
methods to large amounts of past usage data via machine learn-
ing, allowing us to create mathematically sound models of every
service, which we can then use to reliably predict each service’s
future capacity needs.

Each model takes in, as input, a value of Uber’s primary busi-
ness metrics, things like Trips Currently Online, and returns,
as output, the amount of hardware resources needed to handle
that particular volume of the metric. For example, for service
“FooBar,” the model might indicate that to handle 100K trips
online, the service will need 1000 CPU cores.

By providing a method based on a blackbox model of any and
every service, which takes in an input that is common across all
of Uber, we now have a repeatable, scalable, interpretable, and
simple way of both assessing capacity usage and predicting its
future values. We don’t need to know about a service’s dependen-
cies, its particulars, its architecture, how its software performs,
etc.—all of that is represented mathematically by the model,
and we can deal solely with representative numbers, instead of
human/jedi knowledge.

As is typical with statistically derived models, we are also able to
construct empirically derived measures of the model’s accuracy,
so that we can have a very precise idea of how much confidence
we can place in the model’s prediction. Whereas plans are often
and easily broken, predictions are made with an expectation of
success (along with an empirical measure of possible failure).

RF: How did you go about creating a method for capacity predic-
tion at Uber?

RB: The primary things needed for us to bring capacity predic-
tion to fruition were: (1) a consideration of the fundamental
thing(s) that drive resource consumption and (2) a way to repre-
sent these things via data and mathematical models.

At Uber, the demand for most services is driven by a few key
high-level metrics, such as the number of drivers online or the
number of trips occurring. Because of this, the levels of these
metrics typically have a close correlation with resource usage.
We started by building multivariate data sets comprising these
metrics and the CPU usage of a single service, at a granularity of
one hour. We typically use about two weeks of historical data to
ensure that we’re only analyzing the most recent representation
of the service, including its current software releases, dependen-
cies, clients, payloads, etc. Because we have multiple high-level
metrics that can drive a service’s usage, we perform correlation
analysis to mathematically determine which metric has the stron-
gest correlation with the service’s resource usage. Having deter-
mined the best metric, we then use machine learning methods to
build a quantile regression model, which is a variant of a linear
regression model, with the high-level metric as the feature/input
and the resource usage as the outcome/output. With a quantile
regression, we can retrieve 99% of all possible outputs, allowing us
to greatly minimize the possibility of underpredicting.

We repeat this process for every service at Uber and store the
resulting model in a database, with each model relying on one
of a few high-level metrics as its input. Because our high-level
metrics are key performance indicators for the entire company,
we have accurate forecasting for them, extending months into
the future. We simply pass these forecasts into our models and
are able to get a prediction for resource usage for each service for
the next few months.

Any service owner, SRE engineer, etc., can now query for their
service’s predicted resource needs for any week within the next
2–3 months and adjust their allocations accordingly.

RF: Is capacity prediction something unique for Uber or is it easy
for others to also do this?

RB: This is very doable anywhere! The toughest thing that others
might run into is acquiring both historical and forecasted high-
level business metric data. Once that is acquired, along with
service-level resource usage data (CPU, memory, etc.), you’ll
need machine-learning methods to apply to the data and train a
model. ML libraries are readily available in a number of librar-
ies, primarily in Python or R. Or you could also write your own
model trainer. Finally, you’ll need a place to store the models (we
use Cassandra) and a way to retrieve and apply them. We built a
light API in front of the Cassandra model store.

Reference
[1] Rick Boone, “‘Capacity Prediction’ instead of ‘Capac-
ity Planning’: How Uber Uses ML to Accurately Forecast
Resource Utilization”: https://www.usenix.org/conference
/srecon18americas/presentation/boone.

https://www.usenix.org/conference/srecon18americas/presentation/boone
https://www.usenix.org/conference/srecon18americas/presentation/boone

