
40    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

COLUMNSPython
Shared Libraries and Python Packaging, an Experiment

P E T E R N O R T O N

I’ve been thinking about sharing some thoughts and experiments with
the weird science experiment that is memfd_create(). It’s a system call in
somewhat recent versions of the Linux kernel—3.17 and later.

First let’s take a trip back in time, and then we’ll return to this system call with what I think
is a really fun idea that could be used to explore and maybe improve an inconvenient aspect
of Python packaging.

Shared Libraries
To get started, I want to talk about shared libraries.

When I was first exposed to UNIX systems in college, there was a tremendous amount of
work being done to make the servers of the day more efficient. What computers of the day did
was to act as time-sharing systems, allowing shell, compilation, mail, gopher, talk, netnews,
and many other activities for multiple users. Like today, most users relied on software that
the system administrator either compiled or installed as a package, which would benefit
from the use of dynamically linked binaries.

These would help memory usage because by being dynamically linked, they were being
linked at runtime to shared libraries. “Shared” in this case had more than one meaning. It
meant both that they provide shared code—different programs could benefit from not having
to write the same functions over and over—but by a neat trick it also meant that the read-only
library codes that were used in N programs would all be mapped by the kernel into the same
real set of bytes of memory, so each mapping of the library into a program only required a
little memory overhead. This meant that even if 500 users loaded 100 KB of the same library
code, via logging in and running, e.g., pine (which was at one point a very common mail
reader), each instance of the program would see 100 KB of mappings getting linked in to its
local memory, but over 500 invocations. But instead of using 50 MB of memory, an impos-
sibly large amount at the time, all those invocations would use something more like 100 KB
total, which is pretty cool, via some clever kernel memory mapping.

The involvement of the kernel is very important to bear in mind here. The shared mappings
are done by the kernel and the dynamic linker (ld.so on Linux) working together to provide
shared mappings of the library routines into each process’s virtual memory space at an
address that is only known when it’s loaded. They are then “fixed-up” at runtime to point to
newly assigned addresses so the executable can find them. If you’ve ever wondered why your
Python extension modules are always compiled and linked with the -fpic or -fPIC flag, that’s
why. (See http://bottomupcs.sourceforge.net/csbu/c3673.htm for more about the mecha-
nisms that are involved here.)

Even back then, you could share actual routines without bringing shared libraries into the
picture by statically linking libraries. This is much simpler, but in the era where powerhouse
workstations had 8 MB of memory, they didn’t tell a good story about memory efficiency.

In modern systems, shared libraries aren’t often first and foremost thought of as ways of
saving memory by shared mappings between different processes. In fact they’re often seen as

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books on
Linux and Python, helped with

the New York Linux Users Group, and helped
to organize past DevOpsDays NYC events.
Even though he is a native New Yorker, he is
currently living in and working from home in
the northeast of Brazil. In addition to Python,
Peter is slowly improving his knowledge of
Rust, Clojure, and maybe other fun things.
pcnorton@rbox.co.

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  41

COLUMNS
Python: Shared Libraries and Python Packaging, an Experiment

a waste of effort! With the recent abundance of memory avail-
able to systems, and the huge amount of data we’re processing
with that memory, the savings from the shared memory part of
shared libraries that I described above has become a bit of an
anachronism.

Especially when using Python, the “shared” part of shared
libraries has become more about sharing C code with the
Python runtime, making libraries able to be invoked from the
interpreter. The benefits of this are so common they’re almost a
running joke—most answers to questions about making Python
faster, for example, usually quickly bring up the answer, “Use
cython” or “Write it in C and load the faster implementation
from the shared library.” From a more practical standpoint, a
pillar of the Python community is the scientific Python stack
built on top of NumPy and SciPy, and it goes one step further
where FORTRAN code is built and linked so that it is compatible
with C calling conventions, and then Python loads the resulting
libraries for fast matrix math. Python obviously has to do more
than “just load the library” for this to work, but that’s where the
rubber meets the road, so to speak.

Packaging
Now, the more common of these libraries are usually packaged
up by the operating system maintainer—Debian, Red Hat, etc. if
you’re a fellow Linux user—or someone who fits into that job if
your *nix is a different *nix. But once it’s built, a shared lib can be
dynamically linked by a Python runtime, whether it’s packaged
by the operating system maintainer, built yourself, or obtained
from a third party like a scientific Python packager.

There was a time when GNU autoconf was pretty cutting-edge.
It is now considered quite unwieldy. Its heyday was in a world
with literally dozens of operating systems that were sort-of-but-
not-quite like a POSIX or BSD UNIX, and nothing built for one
would compile on any others without inhuman knowledge of
different CPU architectures, C compilers, and luck.

That was then, and the world is much simpler now (for UNIXes
at least), and that’s led to the current generation of popular
languages being able to do better than ./configure. Now instead
of just producing a runnable program and maybe making it
easy to copy the results to your local file system, modern build
toolchains will also package up your work, and often turn them
into a tidy single-file image that can just be executed. Golang is
arguably the king of this category, where one of its main sell-
ing points is that when building your program, you will create a
static binary—that’s it!

Since the modern lifecycle for programs involves multiple
deployments per day, there is a lot of appeal to the idea of being
able to bundle up a single artifact containing everything a

program needs. The prospect of having no external libraries to
depend on and no OS packages to install prior—just being able
to copy a file and being able to just run the program has become
the gold standard of new compiled languages, and once you’ve
done this, it’s pretty nice. Golang, Java, and Rust do a great job
with having their tooling provide this experience, and they set a
standard for other languages to shoot for.

Python has an interesting story in this respect. Python will open
a zip file that contains Python code, if the appropriate structure
is in place. This is described in PEP 273, and there is some more
info in PEP 441. This is the core of some cool stuff that you can
get from PyPI, including pre-packaged wheels, eggs, and, outside
of PyPI, other less geometrically named things like pexes and pars.

Having all of your dependencies in one place is pretty nice. You
don’t have to install anything special, you can just point the
appropriate Python interpreter at a built zip file and get a really
nice experience—both as a developer since the build process is
not complicated and as a sysadmin; as long as the version of the
Python interpreter is a good match for the application in the
archive, you have a pretty good chance at deploying and getting a
good night’s sleep, too. On the face of it, something as convenient
as, perhaps, Java jars. And just about the nicest thing about it is
that you simply don’t have to worry about installing OS packages
or other dependencies.

However, there is one major weak point in using zip archives
with Python. Specifically it has to do with shared libraries. If
you want to have a shared library in your package, the dynamic
linker on your platform, together with the kernel can’t map that
bit of the archive file into the running program!

That’s not the end of the story, though. There is a simple hack
that makes these zip archives work: the packaging tool that
works with zip files will unzip a shared object from the zip file,
write it out to disk, and then use the dynamic loader to make it
available to your programs.

Get that? It extracts the library from the zip archive to plant it
onto disk. The reason is that neither the Linux kernel nor other
UNIX kernels that I’m aware of have special magic to allow
portions of a zipfile to be used as a shared memory mapping for
a shared library. This means that when you have a zipped-up
Python archive for a project that uses common facilities that
are best used via shared libraries—like MySQL, gRPC, XML, or
what have you—and you want to include them in your bundled
artifact in order to guarantee that there aren’t dangling, unre-
solved dependencies, this zip-file format will need to do a few
things that you’d prefer not to do:

42    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

COLUMNS
Python: Shared Libraries and Python Packaging, an Experiment

1.	 Use space on disk—at least temporarily

2.	 Use additional disk reads+writes

3.	 Use additional CPU time at startup and shutdown of the program

None of that seems prohibitive, but in my experience, it can be
really demoralizing when you find out that /tmp has filled up
with detritus from your project, or when you learn that the zip
file will get extracted into the running user’s home directory,
and that user isn’t supposed to write there. Or whatever other
difficulties your site may discover down in the weedy details of
the specific process.

Now, returning to that cool thing I mentioned at the beginning.
I heard about a pretty neat new feature in Linux a few months
back. It’s a system call, memfd_create(), that allows us to turn
a region in memory into a file in /proc/<pid>/fd/<the fd

number>. What’s really interesting is that it acts like a normal
file, which includes being able to be symlinked from other parts
of the file system.

So, wanting to reproduce an idea that I’d heard about from some
of the super tech companies, I thought it would be fascinating
to have the kernel be able to map sections of the zip files—the
shared libraries in particular—so that it could be used as a
shared library.

This system call doesn’t do exactly that, but it seems like it could
get us closer to the goal of all-in-one packaging without having
to extract to the file system. This works by consuming memory
instead of file system space and disk I/O. The question is whether
the presence of an appropriate mapping would prevent the
dynamic linker from trying to load a library from the system (it
should as long as the dependencies are resolved appropriately). If
this worked, it would allow libmysql.so, for example, to be pack-
aged up and shipped.

And it turns out that as a toy, this seems to work! The core of this
is some interesting syscall work that Python lets you do via the
ctypes library using the CDDL call, which maps in the library
via dlopen(). It’s pretty nifty—we can load up libc in order to get
a hold of the syscall we want, then map in the file we have in the
archive as bytes, creating the library in memory, and then use
CDDL again to load it up.

An outtake of the code, which you can find at https://github.com​
/pcn/pymyxec, looks like this:

Need to get memfd_create(), which is now in the

syscall table at 319

Returns the FD number

def build_a_lib(lib_name, source_bytes):

 memfd_create = 319

 libc = CDLL(“libc.so.6”)

 print(“Lib name is {}”.format(lib_name))

 so_file_name = “{}.so”.format(lib_name)

 fd = libc.syscall(memfd_create, so_file_name, 0)

 for data in source_bytes:

 os.write(fd, data)

 CDLL(“/proc/self/fd/{}”.format(fd))

 return fd

I’m still smiling and happy at how this has worked. Running this
as documented in the README.adoc in the repo shows how:

spacey@masonjar:~/dvcs/pcn/pymyxec$ bazel build

	 mysql_repl.par; bazel-bin/mysql_repl.par

INFO: Analysed target //:mysql_repl.par (1 packages loaded).

INFO: Found 1 target...

Target //:mysql_repl.par up-to-date:

 bazel-bin/mysql_repl.par

INFO: Elapsed time: 1.389s, Critical Path: 0.84s

INFO: 1 process, linux-sandbox.

INFO: Build completed successfully, 2 total actions

Python 2.7.15rc1 (default, Apr 15 2018, 21:51:34)

[GCC 7.3.0] on linux2

Type “help”, “copyright”, “credits” or “license”

	 for more information.

(InteractiveConsole)

>>> clientinfo = entry(“libmysqlclient.so”, “__main__

/libmysqlclient.so”)

You got it

[u’bazel-bin/mysql_repl.par/pypi__certifi_2018_4_16’, u’bazel

-bin/mysql_repl.par/pypi__chardet_3_0_4’, u’bazel-bin/mysql

_repl.par/pypi__idna_2_7’, u’bazel-bin/mysql_repl.par/pypi

__urllib3_1_23’, u’bazel-bin/mysql_repl.par/pypi

__requests_2_19_1’, u’bazel-bin/mysql_repl.par/pypi

__docopt_0_6_2’, u’bazel-bin/mysql_repl.par/pypi__MySQL

_python_1_2_5’, ‘bazel-bin/mysql_repl.par’, u’bazel-bin/mysql

_repl.par/__main__’, ‘/usr/lib/python2.7’, ‘/usr/lib/python2.7

/plat-x86_64-linux-gnu’, ‘/usr/lib/python2.7/lib-tk’, ‘/usr/lib

/python2.7/lib-old’, ‘/usr/lib/python2.7/lib-dynload’, ‘/home

/spacey/.local/lib/python2.7/site-packages’, ‘/usr/local/lib

/python2.7/dist-packages’, ‘/usr/lib/python2.7/dist-packages’,

‘/usr/lib/python2.7/dist-packages/gtk-2.0’]

<zipfile.ZipExtFile object at 0x7ff59c934190>

Lib name is libmysqlclient.so

this pid is 14200, lib_fd is 14200

>>> modinfo = entry(“_mysql”,

“pypi__MySQL_python_1_2_5/_mysql.so”)

You got it

[u’bazel-bin/mysql_repl.par/pypi__certifi_2018_4_16’,

u’bazel-bin/mysql_repl.par/pypi__chardet_3_0_4’,

 ...

<zipfile.ZipExtFile object at 0x7ff59c9341d0>

Lib name is _mysql

this pid is 14200, lib_fd is 14200

>>> link_a_lib(“_mysql.so”, modinfo[0], modinfo[1])

>>> import MySQLdb

https://github.com/pcn/pymyxec
https://github.com/pcn/pymyxec

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  43

COLUMNS
Python: Shared Libraries and Python Packaging, an Experiment

At the end of that, we can validate that the process is using the
library that we’ve loaded, the shared library in the par file, and
not the shared library installed on the file system.

 (aws) spacey@masonjar:~/dvcs/pcn/pymyxec$ pmap 14200 |

	 grep -i mysql

14200: python bazel-bin/mysql_repl.par

00007ff59b4d0000 	40K	 r-x--	memfd:_mysql.so (deleted)

00007ff59b4da000 	2044K	 -----	memfd:_mysql.so (deleted)

00007ff59b6d9000 	4K	 r----	memfd:_mysql.so (deleted)

00007ff59b6da000 	16K	 rw---	memfd:_mysql.so (deleted)

00007ff59bc84000 	3656K	 r-x--	memfd:libmysqlclient.so.so

(deleted)

00007ff59c016000 	2048K	 -----	memfd:libmysqlclient.so.so

(deleted)

00007ff59c216000 	24K	 r----	memfd:libmysqlclient.so.so

(deleted)

00007ff59c21c000 	456K	 rw---	memfd:libmysqlclient.so.so

(deleted)

This shows that the MySQL libraries that are mapped in are only
those that were mapped in via ctypes.CDLL, which is doing the
equivalent of a dlopen() call and mapping in the library. It also
shows that I should update the README on GitHub with one
less .so. The (deleted) is just pmap showing that it thinks the
underlying file used to create the mapping was deleted.

It would be nice if libmysql.so could be read without having to
symlink it into /tmp as in the previous example, but using an
existing module like this, with a compiled shim library, doesn’t
give me that flexibility—though someone smarter than I may
have an idea about how to do that. Pull requests are welcome!

As a closing thought, one remote possibility would be to see how
far we could go with this. For example, could it be possible to
store a subset of the required Python support files? Enough of
what an interpreter needs from lib/python<version>/ could
be included into the archive, ideally in a way that memfd_create
could be used to populate, say, a virtualenv with a bunch of sym-
links into /proc/self/fd/<various pids>, and that virtualenv
and the Python interpreter would be entirely spun from the zip
file. That way the appropriate Python binary, built and tested
as part of the package, would be bootstrapped by the system
Python.

I don’t know if anyone is interested in that, but if so maybe it’d be
a good incentive for me to try to do something with Python 3.

Cheers, and have a great day. I hope this helps you smile a bit.

