
44    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

COLUMNS

Practical Perl Tools
GraphQL Is Pretty Good Anyway

D A V I D N . B L A N K - E D E L M A N

In a past column we had the pleasure of learning about graph databases
together. That particular column was a blast to write because it gave me
the opportunity to dig into graphs, something I’ve always found interest-

ing. In the process of researching that article, I ran into GraphQL. “Oh, goody,
more graphs!” I thought. Perhaps an SQL-esque language for graphs? The
bad news is GraphQL is nothing like these things or the graph databases we
talked about. Even though they both have “graph” in their name, I would be
hard-pressed to describe how they connect (truth be told, it isn’t immediately
apparent why GraphQL has “graph” in the name). The good news is GraphQL
is interesting in its own right, so today we are going to give it its own column.
And in keeping with my need for radical honesty, I just want to point out up
front that the majority of this column will be focused on GraphQL with the
Perl bits largely showing up at the end (and being straightforward-ish).

GraphQL Basics
GraphQL describes itself as “a query language for your API,” which is both true and perhaps
not as helpful as it could be. The official website continues with:

GraphQL is a query language for APIs and a runtime for fulfilling those queries
with your existing data. GraphQL provides a complete and understandable
description of the data in your API, gives clients the power to ask for exactly what
they need and nothing more, makes it easier to evolve APIs over time, and enables
powerful developer tools.

But I’m still not sure that helps enough. There are a few parts necessary to understanding
what’s behind GraphQL. To start, I think of it as being one door down from REST on the
client-server interaction hallway. To see what I mean, let’s use REST as the exemplar since it
has been mentioned countless times in this column.

With REST, the dance goes something like this:

- GET …/items/shoes the shoes we have

- GET …/items/shoe/id the details for a particular shoe

- GET …/items/shoe/id/laces the color laces it can come with

- GET …/stock/id?laces=brown the number of those shoes with the brown laces in stock

- GET …/stock/id?laces=black the number of the black-laced kind in stock

I’m exaggerating a little bit, but with REST the idea is you make a request, then you follow up
that request with additional requests for more specific information. Sometimes you do this
a bunch of times. This is great from a data architecture perspective (especially if the URLs
are legible). This is less great from a “network is slow and perhaps expensive” perspective:
for example, if the client was a mobile phone. That was exactly the use case Facebook had in

David has over 30 years of
experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments and is the author

of the O’Reilly Otter book (new book on SRE
forthcoming!). He is one of the co-founders
of the now global set of SREcon conferences.
David is honored to serve on the USENIX
Board of Directors where he helps to organize
and engineer conferences like LISA and
SREcon.  dnb@usenix.org

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  45

COLUMNS
Practical Perl Tools: GraphQL Is Pretty Good Anyway

mind when it created GraphQL. GraphQL attempts to provide
a mechanism for saying, “Here’s the data I want” and getting it
back in a single interaction.

The second thing GraphQL attempts to do is to allow the client
to have a simple, clear understanding of just what data the server
holds and what the client can ask for. With REST, there’s nothing
about the interaction model that prevents the client from asking
for a piece of fruit from the shoe store or querying /those-brown-

things-that-go-on-your-feet/ instead of the /shoes/ endpoint.
In that example, the server would likely tell the client to take a
leap, but wouldn’t it be better if the client already had an under-
standing of what it and the server could correctly chat about?
With GraphQL, there is a schema (kinda like database schemas)
that is crystal clear about what data is in play, what form it takes,
and how it can be queried.

The GraphQL spec says:

GraphQL is a query language designed to build
client applications by providing an intuitive and
flexible syntax and system for describing their data
requirements and interactions.

That’s probably the easiest way to think about it.

Let’s Play
To get a handle on how this all works in practice (at least at a
very surface level), let’s look at some sample GraphQL. To give
you examples that will be easy for you to explore in greater depth
later, I’m going to use ones that resemble those in the official doc
on https://graphql.org.

Here’s one of the first pieces of GraphQL in the intro tutorial:

{

 hero {

 name

 }

}

This says to query the field “name” from the hero object. The
reply looks (intentionally) like the query:

{

 “data”: {

 “hero”: {

 “name”: “R2-D2”

 }

 }

}

Note, there’s something funky in the docs around this example;
more info on that in a moment.

We can add more fields and more objects as desired:

{

 hero {

 name

	 appearsIn

	 friends {

	 name

	 }

 }

}

Did you catch the interesting part? Objects can have both fields
and sub-objects (that can have fields). In this case, in addition to
asking for a new field, I’ve also asked for both the name fields in
the hero object and the name fields in the friends object in that
hero object. That would yield something like:

{

 “data”: {

 “hero”: {

 “name”: “R2-D2”,

	 “appearsIn”: [

		 “NEWHOPE”,

		 “EMPIRE”,

		 “JEDI”

],

 “friends”: [

	 {

	 “name”: “Luke Skywalker”

	 },

	 {

	 “name”: “Han Solo”

	 },

	 {

	 “name”: “Leia Organa”

	 }

]

 }

 }

}

This example also shows that, if desired, objects can hold lists of
values fields, not just single strings.

If we want to query for a specific object, we can pass in
arguments:

{

 hero(episode:EMPIRE) {

 name

 }

}

and get just the results we need:

46    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools: GraphQL Is Pretty Good Anyway

{

 “data”: {

 “hero”: {

 “name”: “Luke Skywalker”

 }

 }

}

Wait, what? If you are puzzled at this response given the mate-
rial we’ve seen before, don’t sweat it. I was, too. I could not figure
out why the initial “{hero {name} }” didn’t yield all of the possible
heroes. It took me a bunch of spelunking around in the source
for the documentation to find the reason, but when I found it, it
yielded an important truth. Let me explain.

The reason why we only saw R2-D2 when there wasn’t an
“episode” argument was this little piece of code called from the
source of the page:

/* Allows us to fetch the undisputed hero of

 the Star Wars trilogy, R2-D2.

 */

function getHero(episode) {

 if (episode === ‘EMPIRE’) {

 // Luke is the hero of Episode V.

 return humanData[‘1000’];

 }

 // Artoo is the hero otherwise.

 return droidData[‘2001’];

}

GraphQL isn’t a database. Remember, “GraphQL is a query
language designed to build client applications by providing an
intuitive and flexible syntax and system for describing their
data requirements and interactions.” How those interactions
take place are (1) language agnostic and (2) defined by the code
you do wire up to it. The code assigned for returning heroes (the
GraphQL “resolver” for hero) had its own opinion as to what it
should return. This particular lesson took me longer to grok than
I would have liked; hopefully, I’ve saved you a little time.

Want to see both heroes? For that, we would use a syntax
(aliases) that allows us to ask for two objects that share the same
field name, but with different arguments:

{

 empireHero: hero(episode: EMPIRE) {

 name

 }

 jediHero: hero(episode: JEDI) {

 name

 }

}

The result makes a bit more sense now:

{

 “data”: {

 “empireHero”: {

 “name”: “Luke Skywalker”

 },

 “jediHero”: {

 “name”: “R2-D2”

 }

 }

}

There are a number of syntactical sugar extensions to the
language including those that make it easier to repeat parts of
a query without writing it out repeatedly, ways to pass vari-
ables into the language, and ways to change the data (mutate it)
instead of just querying. There are also some spiffy introspec-
tion capabilities that allow a client to ask the server questions
about the schema.

In the interest of brevity, rather than diving into these things (or
schema construction itself), I recommend you take a look at the
tutorial at https://graphql.github.io/learn/. Instead, let’s actually
see how we can use GraphQL with Perl.

GraphQL and Perl
The heart of all (present day) support of GraphQL in Perl comes
from a port of the reference JavaScript implementation. Quick
warning: when you install the GraphQL Perl module, it has a
number of dependencies. Make that a large number of depen-
dencies (because the dependencies have dependencies). When I
installed it on a fresh Perl distribution, the count was 80. I used
“cpanm” (which we’ve talked about in a past column), so it was
only a matter of waiting, but I thought I’d give you fair warning.

For the client-server interaction aspect of GraphQL, the client
support is pretty trivial. Your client just needs to be able to spit
some GraphQL at the server. It could in theory do some more
interesting things like schema validation, but let’s leave that for
a moment. That is probably just by constructing and sending an
HTTP request with the right payload in it like we’ve done a ton
of times before in this column. The harder part is the server-side
support. That’s where the Perl module mostly comes into play.

In the past we’ve looked at a few Perl web frameworks with
the most emphasis on Mojolicious. We’ll use Mojolicious::Lite
to handle the server duties for this super quick example as
well. The key to using Mojolicious is the plugin module called
Mojolicious::Plugin::GraphQL, which is a separate dependency
you will need to install. Let’s take a look at a piece of sample code
from a Rosetta Stone-esque blog post here:

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  47

COLUMNS
Practical Perl Tools: GraphQL Is Pretty Good Anyway

http://​blogs​.perl​.org​/users​/ed​_j/2017​/10​/graphql​-perl​---graphql​
-js​-tutorial​-translation​-to​-graphql​-perl​-and​-mojoliciousplugin-
graphql​.html.

I call this a Rosetta Stone because this blog post shows the Perl
equivalent code for one of the more well-known tutorials whose
examples are in JavaScript (https://graphql.org/graphql-js/).
Here’s one of the code samples from that blog post:

use Mojolicious::Lite;

use GraphQL::Schema;

my $schema = GraphQL::Schema->from_doc(<<’EOF’);

type Query {

	 helloWorld: String

}

EOF

plugin GraphQL => {

	 schema => $schema,

	 root_value => { helloWorld =>

	 ‘Hello, world!’ },

	 graphiql => 1,

};

app->start;

The first part of the sample includes a definition of a GraphQL
schema (a very simple one). The second part loads the GraphQL
plugin and sets up the value that will be returned when {hel-

loWorld} gets queried. Then we start the Mojolicious event loop
and are off to the races.

The one fun part of this plugin shown in the code that I want to
highlight is this line:

 graphiql => 1,

GraphiQL is an in-browser IDE that is super spiffy. It allows you
to interactively play with GraphQL queries, find errors, see all of
the possible objects/fields from a schema, auto-complete them
when typing, and so on. When you include this in the plugin con-
figuration as above, it will automatically load GraphiQL for you.
So if we start up this code snippet with:

$ perl ./test2.pl daemon -l http://*:5000/graphql

[Mon Jun 25 10:43:11 2018] [info] Listening at

“http://*:5000/graphql”

Server available at http://127.0.0.1:5000/graphql

and browse to that URL, we see something like Figure 1.

I have opened up the Docs section and clicked through a bit, so
you can see that it stands at the ready to show you what’s avail-
able in the schema. I have also typed something into the left
window pane and executed the query, so you can get the full idea
from the screen shot.

With this little tip on how to play with GraphQL, I’m going to
wind the column down. GraphQL has a bit of a learning curve,
but it is some great stuff and there is strong support for it in the
community. I hope you’ll take a moment to play with it a bit. Take
care, and I’ll see you next time.

Figure 1: The GraphiQL interface

http://blogs.perl.org/users/ed_j/2017/10/graphql-perl---graphql-js-tutorial-translation-to-graphql-perl-and-mojoliciousplugingraphql.html
http://blogs.perl.org/users/ed_j/2017/10/graphql-perl---graphql-js-tutorial-translation-to-graphql-perl-and-mojoliciousplugingraphql.html
http://blogs.perl.org/users/ed_j/2017/10/graphql-perl---graphql-js-tutorial-translation-to-graphql-perl-and-mojoliciousplugingraphql.html

