
48    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

COLUMNS

Yes, Virginia, There Is Still LDAP
C H R I S “ M A C ” M C E N I R Y

W ith the current trend of adapting web-based single-sign-on
solutions, it is easy to forget about one of the most prominent
authentication and user information systems still in use: LDAP.

At its base, LDAP is a collection of objects that:
1.	 have a Distinguished Name to identify them,
2.	 have attributes that follow predetermined schema, and
3.	 are structured and related to each other as nodes on a branching tree.

The above properties affect how you identify and manipulate them.

Two of the most common implementations of LDAP are Microsoft’s Active Directory and
OpenLDAP. Microsoft’s Active Directory (AD) underpins many corporate infrastructures.
While you may not want to use it for all AD operations, AD provides LDAP as a first-class
way of searching and modifying objects inside of it. OpenLDAP is commonly found in many
open source shops and large cluster installations.

In this article, we will look at two common interactions with LDAP:

◆◆ How do you find a user in LDAP?

◆◆ How do you add a user to a group in LDAP?

Along with properly assigned group ownership, these two can be used to help users manage
their own groups.

To help us out, we’re going to focus on the go-ldap library (https://github.com/go-ldap/ldap).
In addition to that, we will use the Go Subrepository library for password handling (https://​
golang.org/x/crypto/ssh/terminal).

Setup
The code for this is found in the useldap directory of the GitHub repository (https://github
.com/cmceniry/login). It includes Gopkg configurations to pull in dependencies. Both the
search and the group commands are expected to be run with a simple go run … command.

In addition to the code, you will need access to an LDAP server. If you are familiar with
LDAP, you can probably modify the examples as necessary for your situations.

If you are new to LDAP, one of the fastest ways to get up and running is to run OpenLDAP as
a docker container:

docker run --hostname ldap.example.com \
 --name ldap -d -p 389:389 -p 636:636 \
 osixia/openldap

Once up and running, you will want to load the included data.ldif file:

ldapadd -H ldap://localhost \
 -D “cn=admin,dc=example,dc=org” -w admin \
 -f ./data.ldif

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

https://golang.org/x/crypto/ssh/terminal
https://golang.org/x/crypto/ssh/terminal

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  49

COLUMNS
Yes, Virginia, There Is Still LDAP

While there are common conventions that appear between
LDAP installs, the specific locations and paths used for objects
can vary. In the examples here, we limit our users to the
ou=people,dc=example,dc=org subtree, and our groups to the
ou=groups,dc=example,dc=org subtree. If you are attempt-
ing the same thing against Active Directory, its structure will
depend entirely on your Forest, Domains, and Organizational
Unit structures. You may have to change the search filters widely
to find the appropriate objects there.

For the sake of brevity, we will ignore TLS in this example.
However, if you are using LDAP, you should be using it securely.
Luckily, the LDAP Go library referenced here has simple support
for TLS. Add the TLS configuration after the ldap.Dial calls:

 err = l.StartTLS(&tls.Config{
 ...
 })

Safely Reading Passwords
LDAP does not maintain a constant session across multiple
connections, but does require authentication, known as “bind-
ing” inside of LDAP. Our examples are simple command line
tools which will create new connections every time that they
are invoked. This means that we’re going to have to authenti-
cate every time as well. To do that, we’ll want a safe and cross-
platform way to obtain the user’s password. In this case, it is the
simple “admin” password, but we should still handle it safely.

passwd.go: GetPassword.

 func GetPassword() (string, error) {
 fmt.Printf(“Password: “)
 pw, err := terminal.ReadPassword(int(os.Stdin.Fd()))
 fmt.Println()
 if err != nil {
 return “”, err
 }
 return string(pw), nil
 }

We begin the above function by asking for a password via our
“Password:” prompt. We don’t end this Printf with a new line in
order to preserve it as a prompt. This doesn’t change the behavior
of it, but it is the common convention for the user interface. The
magic comes in the form of terminal.ReadPassword, which is
the cross-platform method of obtaining input without echoing it
back to the screen.

We finish the main prompting with the Println for two reasons.
First, since terminal.ReadPassword disables echo, any new line
entered by the user will not be echoed and so the next printed
characters will end up on this line. In addition, the Println state-
ment resets the echo state of the terminal. Any Print* would do,
but we are taking out two birds with one stone.

Finding a User
When doing group changes, the first step is to identify the users
to be added or removed from the group. Our first utility will
help us identify users. In the simple case, we’re going to accept a
command line option, the name of a user to find, and return the
distinguished name (DN) for that user.

We start by getting the admin password using our terminal.

ReadPassword wrapper. In this example, we’re going to panic if
anything goes wrong.

search/main.go: getpw.

 pw, err := useldap.GetPassword()
 if err != nil {
 panic(err)
 }

With password in hand, we open our connection to the LDAP
server. ldap.Dial follows the same form that any of the Dial func-
tions do: protocol and hostname:port. After checking for error,
we defer closing the connection so that it will properly shut that
down when we are finished (probably not needed in this case, but
good practice nonetheless).

search/main.go: connect.

 l, err := ldap.Dial(“tcp”, “localhost:389”)
 if err != nil {
 panic(err)
 }
 defer l.Close()

After connecting, we need to identify ourselves. In LDAP terms,
this is called binding. Binding takes a distinguished name and a
password. Our DN is the LDAP admin account.

search/main.go: bind.

 err = l.Bind(“cn=admin,dc=example,dc=org”, pw)
 if err != nil {
 panic(err)
 }

Once fully into the server, we can perform our search with
the Search method of our LDAP connection. Search takes one
argument, *SearchRequest which is constructed with the
general NewSearchRequest func. NewSearchRequest takes nine
arguments:

1.	 The base DN or section of the tree to search under
2.	 The scope or how deeply into the tree to search
3.	 The “Deref” flag to show if there are any objects pointed to
4.	 The limit on the number of resulting entries to get (this can

be further restricted by the server, so the response may not
always be the same)

5.	 The time limit to wait for a response
6.	 The “TypesOnly” flag to indicate whether to show attributes’

names only or names and values

50    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

COLUMNS
Yes, Virginia, There Is Still LDAP

7.	 The filter to use to search what matches which attributes to
select one

8.	 The limit of the attributes to return
9.	 The controls that affect how a search is processed (e.g., to sup-

port paging of results)

Of these, the most common one to change is the search filter, or
what to search for (no. 7), and the second most commonly changed
is the base DN, or where to search for it (no. 1). For our example, we
want to look only under the ou=people,dc=example,dc=org part
of the tree and only for those entries where the common name, or
cn, attribute matches our command line options.

search/main.go: search.

 results, err := l.Search(ldap.NewSearchRequest(
 “ou=people,dc=example,dc=org”,
 ldap.ScopeWholeSubtree, ldap.NeverDerefAliases,
 0, 0, false,
 fmt.Sprintf(“(cn=%s)”, os.Args[1]),
	 nil, nil,
))

Now we show the output with three loops. The results struct has
a primary field, Entries, which is an array of all of the returned
LDAP objects. We can iterate over the array of objects. Each
object has a DN and an array of attributes. By iterating over this
array, we can see that each attribute can have multiple values
(e.g., multiple member attributes for group membership), so we
finally iterate over those and display them.

search/main.go: show.
 for _, r := range results.Entries {
 fmt.Printf(“------- %s -------\n”, r.DN)
 for _, attr := range r.Attributes {
 for _, v := range attr.Values {
 fmt.Printf(“%s: %s\n”, attr.Name, v)
 }
 }
 }

Updating a Group
Once we have the reference to the user object, we can make sure
that that is a member of the group. In our second tool, group,
we’re going to accept a DN (note: not user cn or name) and
ensure that that exists on our mygroup group (i.e., add it if it
doesn’t exist, or just leave it there if it does).

We start by getting the password, connecting, and binding as we
did before:

group/main.go: getpw,connect,bind.

 pw, err := useldap.GetPassword()
 ...
 l, err := ldap.Dial(“tcp”, “localhost:389”)
 ...
 err = l.Bind(“cn=admin,dc=example,dc=org”, pw)

Modifying an LDAP object with something it already has results
in an error. So we first want to check that our user addition
doesn’t already exist on the group. We perform an LDAP search,
but this time on the group.

group/main.go: search.

 results, err := l.Search(ldap.NewSearchRequest(
 “ou=groups,dc=example,dc=org”,
 ldap.ScopeWholeSubtree, ldap.NeverDerefAliases,
 0, 0, false,
 “(cn=mygroup)”,
 nil, nil,
))

With this result, we iterate through the member values and exit
out successfully if the DN is already there.

group/main.go: exist.

 members := results.Entries[0].GetAttributeValues(“member”)
 for _, v := range members {
 if v == os.Args[1] {
 os.Exit(0)
 }
 }

Once we confirm the addition isn’t already there, we proceed
to update the group object. Similar to the NewSearchRequest,
we construct a NewModifyRequest that we can feed to Modify.
The main difference between using the two is that we create
the request struct and then add our modifications to it. In this
case, we Add our DN as a value for the member attribute. Again,
attributes can have multiple values, so we add the array (even if
it’s only one value).

group/main.go: modify.

 m := ldap.NewModifyRequest(
 “cn=mygroup,ou=groups,dc=example,dc=org”,
)
 m.Add(“member”, []string{os.Args[1]})
 err = l.Modify(m)
 if err != nil {
 panic(err)
 }

And with that, we’ve ensured that our user is on the group.

Conclusion
This example shows that Go has the chops to exercise even what
many forgot is a common protocol underlying a lot of infrastruc-
tures. The above could be done with the appropriate invocations
of ldapsearch and ldapmodify, but we can encode some of our
conventions (tree structure, attribute names) and simplify what
we must know to achieve our goals. Add to that that we can
distribute these tool binaries as single files, and we can provide
simple interfaces for our users and ourselves to manage our
resources. This is a very useful method to keep operations run-
ning smoothly in any organization.

