
2    FA L L 20 19   VO L .  4 4 ,  N O.  3 	 www.usenix.org

EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:. rik@
usenix.org W hen I decided to work with computers, I resolved to help make 

computers easier for people to use. I had already witnessed 
through my university classes just how difficult and actually 

inscrutable computers were, and so I hoped that I could make things better. 

I failed. I was waylaid by the usual factor: peer pressure. I wanted to be liked and admired by 
my peer group, and they were programmers and engineers. We loved coming up with elegant 
solutions, whether it was in the hidden underpinnings of products or in the user interface.

I wrote one of my first Musings about this in 1998 [1]. In that column, I describe the magic 
of state machines, beloved of programmers and anathema for just about anybody else. My 
friends and I would wonder why people couldn’t program VCRs or set digital watches when 
we could figure them out without resorting to manuals!

Things today are different. Instead of state machines, we have graphical interfaces with 
ever-changing sets of symbology. Three vertically arranged dots sometimes means, “Here’s 
that menu you’ve been searching for!” but sometimes just leads you off on a wild goose chase 
instead. You are supposed to learn how your new smartphone works from members of your 
peer group. And by the time you’ve figured out how to answer your phone, the interface has 
been updated and you no longer know how to answer your phone.

The desktop metaphor could be called the visual-spatial interface, as it builds on skills 
familiar to our ancient ancestors. We locate the icon on the screen and manipulate it using a 
pointing device. Apple made much out of this interface in the ’80s, with Microsoft embracing 
it in the mid-’90s. Visual-spatial design works well because we are familiar with seeing and 
pointing.

Consider the modern, touchscreen interface as a counter-example. Instead of pointing to 
what we want others to notice, imagine that the number of fingers we used while pointing 
was terribly significant, as was the direction we swiped our pointing fingers afterward. Yes, 
the two-fingered swipe to the left means “Danger, lion!” Or was that just one finger, meaning, 
“Food item, attack!” Somehow, I am not surprised that finger gestures never caught on with 
our not very distant ancestors.

The Lineup
Keeping with my theme of making things easier, more efficient, and definitely cooler, we have 
gg. Fouladi et al., from Stanford University, have created a suite of tools for converting tasks 
such as large compilations, running tests, and video processing into thousands of cloud func-
tions. While even the concept of a lambda is certain to bewilder mere mortals, I believe this 
project will prove a godsend to many of the people who read ;login:. For anyone using lambdas, 
I strongly recommend you read Hellerstein et al., the fifth cite in this article.

Jangda et al. built Browsix, a browser extension that extends more complete access to the 
operating system for applications written in WebAssembly (Wasm). Their purpose was to 
be able to run standard benchmarking tools, and they have done that and noticed that the 
performance they get from Wasm is not quite what was promised. Reading this article will 



www.usenix.org	   FA L L 20 19   VO L .  4 4 ,  N O.  3  3

EDITORIAL
Musings

teach you more about Wasm, but don’t go installing Browsix on 
the browser you use for everyday tasks.

John Koh, Jason Nieh, and Steve Bellovin created E3, a tool for 
encrypting email while it is stored on mail servers. Instead of 
relying on knowledge that Johnny doesn’t have and wouldn’t 
understand anyway [2], they have built an interface for add-
ing public-private key pairs and transparently encrypting and 
decrypting mail messages.

Periwinkle Doerfler is researching the intersection between our 
apps, the device they run on, and our interpersonal relations. 
She spoke on this at Enigma 2019 [3], where I met her at lunch 
and decided I should dig deeper by interviewing her. It shouldn’t 
surprise any of us that our inscrutable devices can be used to 
further abuse by intimate partners, parents, coworkers, and even 
others we barely know at all.

Dave Dittrich has been in the trenches, reverse engineering 
malware and DDoS agents since the late 1990s. More recently, 
Dave has ventured into policy realms as co-author of the Menlo 
Report. I borrowed from one of Dave’s early projects, and basked 
in my 15 minutes of fame, when I predicted attacks against the 
Internet giants of the year 2000 days before the attack began. 
Dave never stopped, creating, for example, the first Forensic 
Challenge [4].

Anwar et al., from IBM at Almaden, explain why the manner in 
which Docker creates containers is inefficient. Docker makes 
creating container images easy—perhaps too easy, leading to 
bloated images, wasted storage, and slower startup times with 
much duplication between layers. They explain why and suggest 
solutions.

Laura Nolan examined complexity in her previous SRE column 
and takes on reliability this time. We all want our software to be 
reliable, and Laura explains some of the key features for building 
reliable software and provides a detailed checklist you can use to 
help you and your team do so.

Peter Norton tells us that it’s past time to move on to Python 3. 
Then Peter explains a way to add type checking to Python, both 
why (if you don’t already know) and how it can be done in 
Python 3.

Dave Josephsen shares some tricks he learned about anomaly 
detection from Monitorama, and explains how you can use Pro-
metheus’s query language (PromQL) to do this yourselves.

Mac McEniry decided it was time for us to learn how to access 
databases with SQL interfaces from within Go programs. As 
usual, you can do this fairly simply by using preexisting Go mod-
ules, but you still need to understand SQL.

Dan Geer and Brian Wade consider the question: are your 
Internet-facing hosts more secure on-premises or in the cloud? 
Using data acquired from a vendor, they provide an intriguing 
answer.

Robert G. Ferrell considers layers. Applications are layered over 
libraries and the operating system, and the network consists of 
some number of layers—just how many and what you name them 
depends on how you slice things.

Mark Lamourine has written reviews of an older book about 
continuous delivery and two books on deep learning. I review 
Neal Stephenson’s Fall.

I really don’t intend to come across like a Luddite. I just hope to 
remind people who write user-interfacing code that your users 
will likely not be members of your peer group. Instead, they may 
be average people interested, even anxious, to partake in the 
wonderful technology you have created. Perhaps now is the time 
for a newer, more natural, interface metaphor, or your potential 
users may be using just one middle finger with which to salute 
your newest creation.

References
[1] R. Farrow, Musings, ;login:, vol. 24, no. 4, August 1998,  
pp. 59–61: http://rikfarrow.com/farrow_aug98.pdf.

[2] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt: 
A Usability Evaluation of PGP 5.0,” in Proceedings of the 
8th USENIX Security Symposium (USENIX Security ’99), 
USENIX Association, pp. 169–184: https://people.eecs​
.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt​
/USENIX.pdf.

[3] P. Doerf ler, “Something You Have and Someone You 
Know—Designing for Interpersonal Security,” Engima 
2019: https://www.usenix.org/conference/enigma2019​
/presentation/doerfler.

[4] The Forensic Challenge: http://old.honeynet.org/challenge​
/index.html.

http://rikfarrow.com/farrow_aug98.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf
https://www.usenix.org/conference/enigma2019/presentation/doerfler
https://www.usenix.org/conference/enigma2019/presentation/doerfler
http://old.honeynet.org/challenge/index.html
http://old.honeynet.org/challenge/index.html


Save the Dates!

18th USENIX  Conference on 
File and Storage Technologies

February 24–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’20
www.usenix.org/fast20

The 18th USENIX Conference on File and Storage Technologies (FAST ’20) brings together stor-
age-system researchers and practitioners to explore new directions in the design, implemen-
tation, evaluation, and deployment of storage systems.

The program committee will interpret “storage systems” broadly; papers on low-level stor-
age devices, distributed storage systems, and information management are all of interest. 
The conference will consist of technical presentations including refereed papers, Work-in- 
Progress (WiP) reports, poster sessions, and tutorials. Paper submissions are due Thursday, 
September 26, 2019.

The full program and registration will be available in December.

17th USENIX Symposium on 
Networked Systems Design
and Implementation

February 25–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS
Co-located with FAST ’20
www.usenix.org/nsdi20

NSDI will focus on the design principles, implementation, and practical evaluation of net-
worked and distributed systems. Our goal is to bring together researchers from across the 
networking and  systems community to foster a broad approach to  addressing overlapping 
research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing ideas 
that further the knowledge and understanding of the networked systems community as a 
whole, continue a significant research dialog, or push the architectural boundaries of net-
work services. Fall paper titles and abstracts are due Thursday, September 12, 2019.




