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PROGRAMMING

Not So Fast
Analyzing the Performance of WebAssembly vs. Native Code
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W ebAssembly is a new low-level programming language, sup-
ported by all major browsers, that complements JavaScript and 
is designed to provide performance parity with native code. We 

developed Browsix-Wasm, a “UNIX kernel in a web page” that works on 
unmodified browsers and supports programs compiled to WebAssembly. 
Using Browsix-Wasm, we ran the SPEC CPU benchmarks in the browser and 
investigated the performance of WebAssembly in detail.

Web browsers have become the most popular platform for running user-facing applications, 
and, until recently, JavaScript was the only programming language supported by all major 
web browsers. Beyond its many quirks and pitfalls from the perspective of programming 
language design, JavaScript is also notoriously difficult to execute efficiently. Programs 
written in JavaScript typically run significantly slower than their native counterparts.

There have been several attempts at running native code in the browser instead of Java
Script. ActiveX was the earliest technology to do so, but it was only supported in Inter-
net Explorer and required users to trust that ActiveX plugins were not malicious. Native 
Client [2] and Portable Native Client [3] introduced a sandbox for native code and LLVM 
bitcode, respectively, but were only supported in Chrome.

Recently, a group of browser vendors jointly developed the WebAssembly (Wasm) standard [4]. 
WebAssembly is a low-level, statically typed language that does not require garbage collection 
and supports interoperability with JavaScript. WebAssembly’s goal is to serve as a portable 
compiler target that can run in a browser. To this end, WebAssembly is designed not only to 
sandbox untrusted code, but to be fast to compile, fast to run, and portable across browsers 
and architectures.

WebAssembly is now supported by all major browsers and has been swiftly adopted as a 
back end for several programming languages, including C, C++, Rust, Go, and several others. 
A major goal of WebAssembly is to be faster than JavaScript. For example, initial results 
showed that when C programs are compiled to WebAssembly instead of JavaScript, they 
run 34% faster in Chrome [4]. Moreover, on a suite of 24 C program benchmarks that were 
compiled to WebAssembly, seven were less than 10% slower than native code, and almost all 
were less than twice as slow as native code. We recently re-ran these benchmarks and found 
that WebAssembly’s performance had improved further: now 13 out of 24 benchmarks are 
less than 10% slower than native code.

These results appear promising, but they beg the question: are these 24 benchmarks really 
representative of WebAssembly’s intended use cases?

The Challenge of Benchmarking WebAssembly
The 24 aforementioned benchmarks are from the PolybenchC benchmark suite [5], which 
is designed to measure the effect of polyhedral loop optimizations in compilers. Accord-
ingly, they constitute a suite of small scientific computing kernels rather than full-fledged 
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applications. In fact, each benchmark is roughly 100 lines of C code. WebAssembly is meant 
to accelerate scientific kernels, but it is explicitly designed for a wider variety of applications. 
The WebAssembly documentation highlights several intended use cases, including scientific 
kernels, image editing, video editing, image recognition, scientific visualization, simulations, 
programming language interpreters, virtual machines, and POSIX applications. In other 
words, WebAssembly’s solid performance on scientific kernels does not imply that it will also 
perform well on other kinds of applications.

We believe that a more comprehensive evaluation of WebAssembly should use established 
benchmarks with a diverse collection of large programs. The SPEC CPU benchmarks meet 
this criterion, and several of the SPEC benchmarks fall under WebAssembly’s intended use 
cases. For example, there are eight scientific applications, two image and video processing 
applications, and all the benchmarks are POSIX applications.

Unfortunately, it is not always straightforward to compile a native program to WebAssembly. 
Native programs, including the SPEC CPU benchmarks, require operating system services, 
such as a file system, synchronous I/O, processes, and so on, which WebAssembly does not 
itself provide.

Despite its name, WebAssembly is explicitly designed to run in a wide variety of environ-
ments, not just the web browser. To this end, the WebAssembly specification imposes very 
few requirements on the execution environment. A WebAssembly module can import exter-
nally defined functions, including functions that are written in other languages (e.g., Java
Script). However, the WebAssembly specification neither prescribes how such imports work, 
nor prescribes a standard library that should be available to all WebAssembly programs.

There is a separate standard [7] that defines a JavaScript API to WebAssembly that is 
supported by all major browsers. This API lets JavaScript load and run a Wasm module, 
and allows JavaScript and Wasm functions to call each other. In fact, the only way to run 
WebAssembly in the browser is via this API, so all WebAssembly programs require at least 
a modicum of JavaScript to start. Using this API, a WebAssembly program can rely on Java
Script for I/O operations, including drawing to the DOM, making networking requests, and 
so on. However, this API also does not prescribe a standard library.

Emscripten [6] is the de facto standard toolchain for compiling C/C++ applications to 
WebAssembly. The Emscripten runtime system, which is a combination of JavaScript 
and WebAssembly, implements a handful of straightforward system calls, but it does not 
scale up to larger applications. For example, the default Emscripten file system (MEMFS) 
loads the entire file-system image in memory before execution. For the SPEC benchmarks, 
the file system is too large to fit into memory. The SPEC benchmarking harness itself 
requires a file system, a shell, the ability to spawn processes, and other UNIX facilities, 
none of which Emscripten provides.

Most programmers overcome these limitations by modifying their code to avoid or mimic 
missing operating system services. Modifying well-known benchmarks, such as SPEC CPU, 
would not only be time-consuming but would also pose a serious threat to the validity of any 
obtained results.

Our Contributions
To address these challenges, we developed Browsix-Wasm, which is a simulated UNIX-
compatible kernel for the browser. Browsix-Wasm is written in JavaScript (compiled from 
TypeScript) and provides a range of operating system services to Wasm programs, including 
processes, files, pipes, and blocking I/O. We have engineered Browsix-Wasm to be fast, which 
is necessary both for usability and for benchmarking results to be valid [1].
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Using Browsix-Wasm, we conducted the first comprehensive 
performance analysis of WebAssembly using the SPEC CPU 
benchmark suite (both 2006 and 2017). This evaluation con-
firms that Wasm is faster than JavaScript (1.3 faster on aver-
age). However, contrary to prior work, we found a substantial gap 
between WebAssembly and native performance. Code compiled 
to Wasm ran on average 1.55 slower in Chrome and 1.45 
slower in Firefox.

Digging deeper, we conducted a forensic analysis of these results 
with the aid of CPU performance counters to identify the root 
causes of this performance gap. For example, we found that 
Wasm produced code with more loads and stores, more branches, 
and more L1 cache misses than native code. It is clear that some 
of the issues that we identified can be addressed with engi-
neering effort. However, we also identified more fundamental 
performance problems that appeared to arise from the design 
of WebAssembly, which will be harder to address. We provided 
guidance to help WebAssembly implementers focus their opti-
mization efforts in order to close the performance gap between 
WebAssembly and native code.

In the rest of this article, we present the design and implementa-
tion of Browsix-Wasm and give an overview of our experimental 
results. This article is based on a conference paper that appeared 
at the 2019 USENIX Annual Technical Conference, which pres-
ents Browsix-Wasm, our experiments, our analysis, and related 
work in detail [1].

Overview of Browsix-Wasm
Browsix-Wasm mimics a UNIX kernel within a web page with no 
changes or extensions needed to a browser. Browsix-Wasm sup-
ports multiple processes, pipes, and the file system. At a high-
level, the majority of the kernel, which is written in JavaScript, 
runs on the main thread of the page, whereas each WebAssembly 
process runs within a WebWorker, which runs concurrently with 
the main thread. In addition, each WebWorker also runs a small 
amount of JavaScript that is necessary to start the WebAssem-
bly process and to manage process-to-kernel communication for 
system calls.

In an ordinary operating system, the kernel has direct access to 
each process’s memory, which makes it straightforward to trans-
fer data to and from a process (e.g., to read and write files). Web 
browsers allow a web page to share a block of memory between 
the main thread and WebWorkers using the SharedArrayBuffer 
API. In principle, a natural way to build Browsix-Wasm would be 
to have each WebAssembly process share its memory with the 
kernel as a SharedArrayBuffer.

Unfortunately, there are several issues with this approach. 
First, a SharedArrayBuffer cannot be grown, which precludes 
programs from growing the heap on demand. Second, browsers 

impose hard memory limits on each JavaScript thread (2.2 GB in 
Chrome), and thus the total memory available to Browsix-Wasm 
would be 2.2 GB across all processes. Finally, the most funda-
mental problem is that WebAssembly programs cannot access 
SharedArrayBuffer objects.

Instead, Browsix-Wasm adopts a different approach. Within 
each WebWorker, Browsix-Wasm creates a small (64 MB) 
SharedArrayBuffer that it shares with the kernel. When a sys-
tem call references strings or buffers in the process’s heap (e.g., 
writev or stat), the runtime system copies data from the process 
memory to the shared buffer and sends a message to the kernel 
with locations of the copied data in auxiliary memory. Similarly, 
when a system call writes data to the auxiliary buffer (e.g., read), 
its runtime system copies the data from the shared buffer to the 
process memory at the memory specified. Moreover, if a system 
call specifies a buffer in process memory for the kernel to write 
to (e.g., read), the runtime allocates a corresponding buffer in 
auxiliary memory and passes it to the kernel. If a system call 
must transfer more than 64 MB, Browsix-Wasm breaks it up into 
several operations that only transfer 64 MB of data. The cost of 
these memory copy operations is dwarfed by the overall cost of 
the system call invocation, which involves sending a message 
between process and kernel JavaScript contexts.

Using Browsix-Wasm, we are able to run the SPEC benchmarks 
and the SPEC benchmarking harness unmodified within the 
browser. The only portions of our toolchain that work outside 
the browser are (1) capturing performance counter data, which 
cannot be done within a browser, and (2) validating benchmark 
results, which we do outside the browser to avoid errors.

Performance Evaluation
Browsix-Wasm provided what we needed to compile the SPEC 
benchmarks to WebAssembly, run them in the browser, and 
collect performance counter data. We ran all benchmarks on a 
6-Core Intel Xeon E5-1650 v3 CPU with hyperthreading and 64 
GB of RAM. We used Google Chrome 74.0 and Mozilla Firefox 
66.0. Our ATC paper describes the experimental setup and 
evaluation methodology in more detail.

Reproducing Results with PolybenchC
Although our goal was to conduct a performance evaluation with 
the SPEC benchmarks, we also sought to reproduce the results 
by Haas et al. [4] that used PolybenchC. We were able to run 
these benchmarks (which do not make system calls): the most 
recent implementations of WebAssembly are now faster than 
they were two years ago.

Measuring the Cost of Browsix-Wasm
It is important to rule out the possibility that any slowdown 
that we report is due to poor performance by the Browsix-Wasm 
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kernel. In particular, since Browsix-Wasm implements system 
calls without modifying the browser, and system calls involve 
copying data, there is a risk that a benchmark may spend the 
majority of its time copying data in the kernel. Fortunately, our 
measurements indicate that this is not the case. Figure 1 shows 
the percentage of time spent in the kernel on Firefox when run-
ning the SPEC benchmarks. On average, each SPEC benchmark 
only spends 0.2% of its time in the kernel (the maximum is 1.2%); 
we conclude that the cost of Browsix-Wasm is negligible.

Measuring the Performance of WebAssembly 
Using SPEC
Finally, we are ready to consider the performance of the SPEC 
suite of benchmarks. Specifically, we used the C/C++ bench-
marks from SPEC CPU2006 and SPEC CPU2017 (the new C/
C++ benchmarks and the speed benchmarks). These benchmarks 
use system calls extensively and do not run without the support 
of Browsix-Wasm. We were forced to exclude four benchmarks 
that either failed to compile with Emscripten or allocated more 
memory than WebAssembly allows in the browser.

In Table 1 we show the absolute execution times of the SPEC 
benchmarks when running in Chrome, Firefox, and natively. All 
benchmarks are slower in WebAssembly, with the exception of 
429.mcf and 433.milc, which actually run faster in the browser. 
Our ATC paper presents a theory of why this is the case. None-
theless, most benchmarks are slower when compiled to Web
Assembly: the median slowdown is nearly 1.5 in both Chrome 
and Firefox, which is considerably slower than the median 
slowdowns for PolybenchC. In our ATC paper, we also compare 
the performance of WebAssembly and JavaScript (asm.js) using 
these benchmarks, and confirm that WebAssembly is faster than 
JavaScript.

Explaining Why the SPEC Benchmarks Are 
Slower with WebAssembly
Using CPU performance counters, our ATC paper explores in 
detail why the SPEC benchmarks are so much slower when com-
piled to WebAssembly. We summarize a few observations below.

Register pressure. For each benchmark and browser, Figure 2 
shows the ratio of the number of load instructions retired by 
WebAssembly over native code. On average, Chrome and Firefox 
retire 2.02 and 1.92 as many load instructions as native 
code, respectively. We find similar results for store instructions 

Figure 1: Percentage of time spent (in %) in Browsix-Wasm calls in Firefox Figure 2: Ratio of the number of load instructions retired by WebAssembly 
over native code

Table 1: Detailed breakdown of SPEC CPU benchmarks execution times 
(of 5 runs) for native (Clang) and WebAssembly (Chrome and Firefox); 
all times are in seconds.

Benchmark Native Google 
Chrome

Mozilla 
Firefox

401.bzip2 370 864 730
429.mcf 221 180 184
433.milc 375 369 378
444.namd 271 369 373
445.gobmk 352 537 549
450.soplex 179 265 238
453.povray 110 275 229
458.sjeng 358 602 580
462.libquantum 330 444 385
464.h264ref 389 807 733
470.lbm 209 248 249
473.astar 299 474 408
482.sphinx3 381 834 713
641.leela 466 825 717
644.nab_s 2476 3639 3829
Slowdown:geomean — 1.55x 1.45x
Slowdown:jmedian — 1.53x 1.54x
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retired. Our paper presents two reasons why this occurs. First, 
we find that Clang’s register allocator is better than the register 
allocator in Chrome and Firefox. However, Chrome and Firefox 
have faster register allocators, which is an important tradeoff. 
Second, JavaScript implementations in Chrome and Firefox 
reserve a few registers for their own use, and these reserved 
registers are not available for WebAssembly either.

Extra branch instructions. Figure 3 shows the ratio of the 
number of conditional branch instructions retired by Web
Assembly over native code. On average, both Chrome and 
Firefox retire 1.7 more conditional branches. We find similar 
results for the number of unconditional branches too. There are 
several reasons why WebAssembly produces more branches 
than native code, and some of them appear to be fundamental to 
the way the language is designed. For example, a WebAssembly 
implementation must dynamically ensure that programs do not 
overflow the operating system stack. Implementing this check 
requires a branch at the start of each function call. Similarly, 
WebAssembly’s indirect function call instruction includes 
the expected function type. For safety, a WebAssembly imple-
mentation must dynamically ensure that the actual type of the 
function is the same as the expected type, which requires extra 
branch instructions for each indirect function call.

More cache misses. Due to the factors listed above, and 
several others, the native code produced by WebAssembly can 
be considerably larger than equivalent native code produced 
by Clang. This has several effects that we measured using 
CPU performance counters. For example, Figure 4 shows that 
WebAssembly suffers 2.83 and 2.04 more cache misses with 
the L1 instruction cache. Since the instruction cache miss rate is 
higher, the CPU requires more time to fetch and execute instruc-
tions, which we also measure in our paper.

Conclusion
We built Browsix-Wasm, a UNIX-compatible kernel that runs 
in a web page with no changes to web browsers. Browsix-Wasm 
supports multiple processes compiled to WebAssembly. Using 
Browsix-Wasm, we built a benchmarking framework for Web
Assembly, which we used to conduct the first comprehensive 
performance analysis of WebAssembly using the SPEC CPU 
benchmark suite (both 2006 and 2017). This evaluation con-
firms that Wasm is faster than JavaScript. However, we found 
that WebAssembly can be significantly slower than native code. 
We investigated why this performance gap exists and provided 
guidance for future optimization efforts. Browsix-Wasm has 
been integrated into Browsix; both Browsix and Browsix-SPEC 
can be found at https://browsix.org.
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Figure 3: Ratio of the number of conditional branch instructions retired by 
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