
12    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

PROGRAMMING

Not So Fast
Analyzing the Performance of WebAssembly vs. Native Code

A B H I N A V J A N G D A , B O B B Y P O W E R S , E M E R Y B E R G E R , A N D A R J U N G U H A

W ebAssembly is a new low-level programming language, sup-
ported by all major browsers, that complements JavaScript and
is designed to provide performance parity with native code. We

developed Browsix-Wasm, a “UNIX kernel in a web page” that works on
unmodified browsers and supports programs compiled to WebAssembly.
Using Browsix-Wasm, we ran the SPEC CPU benchmarks in the browser and
investigated the performance of WebAssembly in detail.

Web browsers have become the most popular platform for running user-facing applications,
and, until recently, JavaScript was the only programming language supported by all major
web browsers. Beyond its many quirks and pitfalls from the perspective of programming
language design, JavaScript is also notoriously difficult to execute efficiently. Programs
written in JavaScript typically run significantly slower than their native counterparts.

There have been several attempts at running native code in the browser instead of Java
Script. ActiveX was the earliest technology to do so, but it was only supported in Inter-
net Explorer and required users to trust that ActiveX plugins were not malicious. Native
Client [2] and Portable Native Client [3] introduced a sandbox for native code and LLVM
bitcode, respectively, but were only supported in Chrome.

Recently, a group of browser vendors jointly developed the WebAssembly (Wasm) standard [4].
WebAssembly is a low-level, statically typed language that does not require garbage collection
and supports interoperability with JavaScript. WebAssembly’s goal is to serve as a portable
compiler target that can run in a browser. To this end, WebAssembly is designed not only to
sandbox untrusted code, but to be fast to compile, fast to run, and portable across browsers
and architectures.

WebAssembly is now supported by all major browsers and has been swiftly adopted as a
back end for several programming languages, including C, C++, Rust, Go, and several others.
A major goal of WebAssembly is to be faster than JavaScript. For example, initial results
showed that when C programs are compiled to WebAssembly instead of JavaScript, they
run 34% faster in Chrome [4]. Moreover, on a suite of 24 C program benchmarks that were
compiled to WebAssembly, seven were less than 10% slower than native code, and almost all
were less than twice as slow as native code. We recently re-ran these benchmarks and found
that WebAssembly’s performance had improved further: now 13 out of 24 benchmarks are
less than 10% slower than native code.

These results appear promising, but they beg the question: are these 24 benchmarks really
representative of WebAssembly’s intended use cases?

The Challenge of Benchmarking WebAssembly
The 24 aforementioned benchmarks are from the PolybenchC benchmark suite [5], which
is designed to measure the effect of polyhedral loop optimizations in compilers. Accord-
ingly, they constitute a suite of small scientific computing kernels rather than full-fledged

Abhinav Jangda is a PhD
student in the College of
Information and Computer
Sciences at the University of
Massachusetts Amherst. For

his research, Abhinav focuses on designing
programming languages and compilers. He
loves to write and optimize high performance
code in his leisure time.
aabhinav@cs.umass.edu

Bobby Powers is a PhD
candidate at the College of
Information and Computer
Sciences at the University
of Massachusetts Amherst

(in the PLASMA lab), and he is a Software
Engineer at Stripe. His research spans systems
and programming languages, with a focus
on making existing software more efficient,
more secure, and usable in new contexts.
bobbypowers@gmail.com

Emery Berger is a Professor
in the College of Information
and Computer Sciences at the
University of Massachusetts
Amherst, where he co-

directs the PLASMA lab (Programming
Languages and Systems at Massachusetts),
and he is a regular visiting researcher at
Microsoft Research, where he is currently
on sabbatical. His research interests span
programming languages and systems, with a
focus on systems that transparently increase
performance, security, and reliability.
emery@cs.umass.edu

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  13

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

Arjun Guha is an Assistant
Professor in the College of
Information and Computer
Sciences at the University
of Massachusetts Amherst,

where he co-directs the PLASMA lab
(Programming Languages and Systems
at Massachusetts). His research interests
include web programming, web security,
network configuration languages, and system
configuration languages.
arjunguha@umass.edu

applications. In fact, each benchmark is roughly 100 lines of C code. WebAssembly is meant
to accelerate scientific kernels, but it is explicitly designed for a wider variety of applications.
The WebAssembly documentation highlights several intended use cases, including scientific
kernels, image editing, video editing, image recognition, scientific visualization, simulations,
programming language interpreters, virtual machines, and POSIX applications. In other
words, WebAssembly’s solid performance on scientific kernels does not imply that it will also
perform well on other kinds of applications.

We believe that a more comprehensive evaluation of WebAssembly should use established
benchmarks with a diverse collection of large programs. The SPEC CPU benchmarks meet
this criterion, and several of the SPEC benchmarks fall under WebAssembly’s intended use
cases. For example, there are eight scientific applications, two image and video processing
applications, and all the benchmarks are POSIX applications.

Unfortunately, it is not always straightforward to compile a native program to WebAssembly.
Native programs, including the SPEC CPU benchmarks, require operating system services,
such as a file system, synchronous I/O, processes, and so on, which WebAssembly does not
itself provide.

Despite its name, WebAssembly is explicitly designed to run in a wide variety of environ-
ments, not just the web browser. To this end, the WebAssembly specification imposes very
few requirements on the execution environment. A WebAssembly module can import exter-
nally defined functions, including functions that are written in other languages (e.g., Java
Script). However, the WebAssembly specification neither prescribes how such imports work,
nor prescribes a standard library that should be available to all WebAssembly programs.

There is a separate standard [7] that defines a JavaScript API to WebAssembly that is
supported by all major browsers. This API lets JavaScript load and run a Wasm module,
and allows JavaScript and Wasm functions to call each other. In fact, the only way to run
WebAssembly in the browser is via this API, so all WebAssembly programs require at least
a modicum of JavaScript to start. Using this API, a WebAssembly program can rely on Java
Script for I/O operations, including drawing to the DOM, making networking requests, and
so on. However, this API also does not prescribe a standard library.

Emscripten [6] is the de facto standard toolchain for compiling C/C++ applications to
WebAssembly. The Emscripten runtime system, which is a combination of JavaScript
and WebAssembly, implements a handful of straightforward system calls, but it does not
scale up to larger applications. For example, the default Emscripten file system (MEMFS)
loads the entire file-system image in memory before execution. For the SPEC benchmarks,
the file system is too large to fit into memory. The SPEC benchmarking harness itself
requires a file system, a shell, the ability to spawn processes, and other UNIX facilities,
none of which Emscripten provides.

Most programmers overcome these limitations by modifying their code to avoid or mimic
missing operating system services. Modifying well-known benchmarks, such as SPEC CPU,
would not only be time-consuming but would also pose a serious threat to the validity of any
obtained results.

Our Contributions
To address these challenges, we developed Browsix-Wasm, which is a simulated UNIX-
compatible kernel for the browser. Browsix-Wasm is written in JavaScript (compiled from
TypeScript) and provides a range of operating system services to Wasm programs, including
processes, files, pipes, and blocking I/O. We have engineered Browsix-Wasm to be fast, which
is necessary both for usability and for benchmarking results to be valid [1].

14    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

Using Browsix-Wasm, we conducted the first comprehensive
performance analysis of WebAssembly using the SPEC CPU
benchmark suite (both 2006 and 2017). This evaluation con-
firms that Wasm is faster than JavaScript (1.3 faster on aver-
age). However, contrary to prior work, we found a substantial gap
between WebAssembly and native performance. Code compiled
to Wasm ran on average 1.55 slower in Chrome and 1.45
slower in Firefox.

Digging deeper, we conducted a forensic analysis of these results
with the aid of CPU performance counters to identify the root
causes of this performance gap. For example, we found that
Wasm produced code with more loads and stores, more branches,
and more L1 cache misses than native code. It is clear that some
of the issues that we identified can be addressed with engi-
neering effort. However, we also identified more fundamental
performance problems that appeared to arise from the design
of WebAssembly, which will be harder to address. We provided
guidance to help WebAssembly implementers focus their opti-
mization efforts in order to close the performance gap between
WebAssembly and native code.

In the rest of this article, we present the design and implementa-
tion of Browsix-Wasm and give an overview of our experimental
results. This article is based on a conference paper that appeared
at the 2019 USENIX Annual Technical Conference, which pres-
ents Browsix-Wasm, our experiments, our analysis, and related
work in detail [1].

Overview of Browsix-Wasm
Browsix-Wasm mimics a UNIX kernel within a web page with no
changes or extensions needed to a browser. Browsix-Wasm sup-
ports multiple processes, pipes, and the file system. At a high-
level, the majority of the kernel, which is written in JavaScript,
runs on the main thread of the page, whereas each WebAssembly
process runs within a WebWorker, which runs concurrently with
the main thread. In addition, each WebWorker also runs a small
amount of JavaScript that is necessary to start the WebAssem-
bly process and to manage process-to-kernel communication for
system calls.

In an ordinary operating system, the kernel has direct access to
each process’s memory, which makes it straightforward to trans-
fer data to and from a process (e.g., to read and write files). Web
browsers allow a web page to share a block of memory between
the main thread and WebWorkers using the SharedArrayBuffer
API. In principle, a natural way to build Browsix-Wasm would be
to have each WebAssembly process share its memory with the
kernel as a SharedArrayBuffer.

Unfortunately, there are several issues with this approach.
First, a SharedArrayBuffer cannot be grown, which precludes
programs from growing the heap on demand. Second, browsers

impose hard memory limits on each JavaScript thread (2.2 GB in
Chrome), and thus the total memory available to Browsix-Wasm
would be 2.2 GB across all processes. Finally, the most funda-
mental problem is that WebAssembly programs cannot access
SharedArrayBuffer objects.

Instead, Browsix-Wasm adopts a different approach. Within
each WebWorker, Browsix-Wasm creates a small (64 MB)
SharedArrayBuffer that it shares with the kernel. When a sys-
tem call references strings or buffers in the process’s heap (e.g.,
writev or stat), the runtime system copies data from the process
memory to the shared buffer and sends a message to the kernel
with locations of the copied data in auxiliary memory. Similarly,
when a system call writes data to the auxiliary buffer (e.g., read),
its runtime system copies the data from the shared buffer to the
process memory at the memory specified. Moreover, if a system
call specifies a buffer in process memory for the kernel to write
to (e.g., read), the runtime allocates a corresponding buffer in
auxiliary memory and passes it to the kernel. If a system call
must transfer more than 64 MB, Browsix-Wasm breaks it up into
several operations that only transfer 64 MB of data. The cost of
these memory copy operations is dwarfed by the overall cost of
the system call invocation, which involves sending a message
between process and kernel JavaScript contexts.

Using Browsix-Wasm, we are able to run the SPEC benchmarks
and the SPEC benchmarking harness unmodified within the
browser. The only portions of our toolchain that work outside
the browser are (1) capturing performance counter data, which
cannot be done within a browser, and (2) validating benchmark
results, which we do outside the browser to avoid errors.

Performance Evaluation
Browsix-Wasm provided what we needed to compile the SPEC
benchmarks to WebAssembly, run them in the browser, and
collect performance counter data. We ran all benchmarks on a
6-Core Intel Xeon E5-1650 v3 CPU with hyperthreading and 64
GB of RAM. We used Google Chrome 74.0 and Mozilla Firefox
66.0. Our ATC paper describes the experimental setup and
evaluation methodology in more detail.

Reproducing Results with PolybenchC
Although our goal was to conduct a performance evaluation with
the SPEC benchmarks, we also sought to reproduce the results
by Haas et al. [4] that used PolybenchC. We were able to run
these benchmarks (which do not make system calls): the most
recent implementations of WebAssembly are now faster than
they were two years ago.

Measuring the Cost of Browsix-Wasm
It is important to rule out the possibility that any slowdown
that we report is due to poor performance by the Browsix-Wasm

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  15

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

kernel. In particular, since Browsix-Wasm implements system
calls without modifying the browser, and system calls involve
copying data, there is a risk that a benchmark may spend the
majority of its time copying data in the kernel. Fortunately, our
measurements indicate that this is not the case. Figure 1 shows
the percentage of time spent in the kernel on Firefox when run-
ning the SPEC benchmarks. On average, each SPEC benchmark
only spends 0.2% of its time in the kernel (the maximum is 1.2%);
we conclude that the cost of Browsix-Wasm is negligible.

Measuring the Performance of WebAssembly
Using SPEC
Finally, we are ready to consider the performance of the SPEC
suite of benchmarks. Specifically, we used the C/C++ bench-
marks from SPEC CPU2006 and SPEC CPU2017 (the new C/
C++ benchmarks and the speed benchmarks). These benchmarks
use system calls extensively and do not run without the support
of Browsix-Wasm. We were forced to exclude four benchmarks
that either failed to compile with Emscripten or allocated more
memory than WebAssembly allows in the browser.

In Table 1 we show the absolute execution times of the SPEC
benchmarks when running in Chrome, Firefox, and natively. All
benchmarks are slower in WebAssembly, with the exception of
429.mcf and 433.milc, which actually run faster in the browser.
Our ATC paper presents a theory of why this is the case. None-
theless, most benchmarks are slower when compiled to Web
Assembly: the median slowdown is nearly 1.5 in both Chrome
and Firefox, which is considerably slower than the median
slowdowns for PolybenchC. In our ATC paper, we also compare
the performance of WebAssembly and JavaScript (asm.js) using
these benchmarks, and confirm that WebAssembly is faster than
JavaScript.

Explaining Why the SPEC Benchmarks Are
Slower with WebAssembly
Using CPU performance counters, our ATC paper explores in
detail why the SPEC benchmarks are so much slower when com-
piled to WebAssembly. We summarize a few observations below.

Register pressure. For each benchmark and browser, Figure 2
shows the ratio of the number of load instructions retired by
WebAssembly over native code. On average, Chrome and Firefox
retire 2.02 and 1.92 as many load instructions as native
code, respectively. We find similar results for store instructions

Figure 1: Percentage of time spent (in %) in Browsix-Wasm calls in Firefox Figure 2: Ratio of the number of load instructions retired by WebAssembly
over native code

Table 1: Detailed breakdown of SPEC CPU benchmarks execution times
(of 5 runs) for native (Clang) and WebAssembly (Chrome and Firefox);
all times are in seconds.

Benchmark Native Google
Chrome

Mozilla
Firefox

401.bzip2 370 864 730
429.mcf 221 180 184
433.milc 375 369 378
444.namd 271 369 373
445.gobmk 352 537 549
450.soplex 179 265 238
453.povray 110 275 229
458.sjeng 358 602 580
462.libquantum 330 444 385
464.h264ref 389 807 733
470.lbm 209 248 249
473.astar 299 474 408
482.sphinx3 381 834 713
641.leela 466 825 717
644.nab_s 2476 3639 3829
Slowdown:geomean — 1.55x 1.45x
Slowdown:jmedian — 1.53x 1.54x

16    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

retired. Our paper presents two reasons why this occurs. First,
we find that Clang’s register allocator is better than the register
allocator in Chrome and Firefox. However, Chrome and Firefox
have faster register allocators, which is an important tradeoff.
Second, JavaScript implementations in Chrome and Firefox
reserve a few registers for their own use, and these reserved
registers are not available for WebAssembly either.

Extra branch instructions. Figure 3 shows the ratio of the
number of conditional branch instructions retired by Web
Assembly over native code. On average, both Chrome and
Firefox retire 1.7 more conditional branches. We find similar
results for the number of unconditional branches too. There are
several reasons why WebAssembly produces more branches
than native code, and some of them appear to be fundamental to
the way the language is designed. For example, a WebAssembly
implementation must dynamically ensure that programs do not
overflow the operating system stack. Implementing this check
requires a branch at the start of each function call. Similarly,
WebAssembly’s indirect function call instruction includes
the expected function type. For safety, a WebAssembly imple-
mentation must dynamically ensure that the actual type of the
function is the same as the expected type, which requires extra
branch instructions for each indirect function call.

More cache misses. Due to the factors listed above, and
several others, the native code produced by WebAssembly can
be considerably larger than equivalent native code produced
by Clang. This has several effects that we measured using
CPU performance counters. For example, Figure 4 shows that
WebAssembly suffers 2.83 and 2.04 more cache misses with
the L1 instruction cache. Since the instruction cache miss rate is
higher, the CPU requires more time to fetch and execute instruc-
tions, which we also measure in our paper.

Conclusion
We built Browsix-Wasm, a UNIX-compatible kernel that runs
in a web page with no changes to web browsers. Browsix-Wasm
supports multiple processes compiled to WebAssembly. Using
Browsix-Wasm, we built a benchmarking framework for Web
Assembly, which we used to conduct the first comprehensive
performance analysis of WebAssembly using the SPEC CPU
benchmark suite (both 2006 and 2017). This evaluation con-
firms that Wasm is faster than JavaScript. However, we found
that WebAssembly can be significantly slower than native code.
We investigated why this performance gap exists and provided
guidance for future optimization efforts. Browsix-Wasm has
been integrated into Browsix; both Browsix and Browsix-SPEC
can be found at https://browsix.org.

Acknowledgments
Browsix-Wasm builds on earlier work by Powers, Vilk, and
Berger (Powers and Berger are co-authors of this article). That
work did not support WebAssembly and had performance issues
that Browsix-Wasm addresses. This work was partially sup-
ported by NSF grants 1439008 and 1413985.

Figure 3: Ratio of the number of conditional branch instructions retired by
WebAssembly over native code

Figure 4: Ratio of the number of L1 instruction cache misses by WebAs-
sembly over native code

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  17

PROGRAMMING
Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code

References
[1] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not So Fast:
Analyzing the Performance of WebAssembly vs. Native Code,”
in Proceedings of the 2018 USENIX Annual Technical Confer-
ence (USENIX ATC ’19): https://www.usenix.org/conference​
/atc19/presentation/jangda.

[2] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A
Sandbox for Portable, Untrusted x86 Native Code,” 30th IEEE
Symposium on Security and Privacy (Oakland ’09), Communi-
cations of the ACM, vol. 53, no. 1, January 2010, pp. 91–99.

[3] A. Donovan, R. Muth, B. Chen, and D. Sehr, “PNaCl: Portable
Native Client Executables,” 2010: https://css.csail.mit.edu​
/6.858/2012/readings/pnacl.pdf.

[4] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the
Web Up to Speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2017), ACM, 2017, pp. 185–200.

[5] PolyBenchC: The Polyhedral Benchmark Suite, 2012: http://​
web.cs.ucla.edu/~pouchet/software/polybench/.

[6] A. Zakai, “Emscripten: An LLVM-to-JavaScript Compiler,”
in Proceedings of the ACM International Conference Companion
on Object Oriented Programming Systems Languages and Appli-
cations Companion (OOPSLA ’11), ACM, 2011, pp. 301–312.

[7] WebAssembly JavaScript Interface, 2019: http://webassembly​
.github.io/spec/js-api/index.html.

XKCD	 xkcd.com

https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
https://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
https://css.csail.mit.edu/6.858/2012/readings/pnacl.pdf
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://webassembly.github.io/spec/js-api/index.html
http://webassembly.github.io/spec/js-api/index.html

J A N 2 7–2 9 , 2 0 2 0
SA N FR A NCISCO, C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The full program and registration will be available in November.

SECURITY AND PRIVACY IDEAS THAT MATTER
Enigma centers on a single track of engaging talks covering a wide range of topics in security and
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection

of society and technology, and to foster an intelligent and informed conversation within the
community and the world. We view diversity as a key enabler for this goal and actively work to

ensure that the Enigma community encourages and welcomes participation from all employment
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations,

and all talk media is available to the public after the conference.

PROGR AM CO-CHAIRS

Daniela Oliveira
University of Florida

Ben Adida
VotingWorks

