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In this article, we describe the structure of Docker images, how they are 
managed by Docker clients, and how they are stored at Docker registries. 
We then present several weaknesses in the current design that can cause 

Docker images to consume excessive storage capacity, degrade container per-
formance, and create contention on the network and the underlying storage 
infrastructure. We suggest several improvements to alleviate these problems. 

At times it seems surprising that hardware virtualization, established virtual machines 
(VMs), rather than software containers took precedence in the technology evolution. Indeed, 
in so many practical use cases, one simply wants to run multiple isolated applications on top 
of a single kernel instead of emulating an entire operating system. This lightweight approach 
allows containers to start in a fraction of a second and, compared to VMs, consume much 
less memory and storage, save CPU cycles, and require only a single OS license.

A number of OS-level virtualization technologies appeared in the early 2000s (e.g., Solaris 
Zones, Linux-VServer, Virtuozzo), but it was only in 2013, with the advent of Docker, that 
containerization started its conquest of datacenters, clouds, and human minds. By 2013, the 
Linux kernel components required for containerization—cgroups and namespaces—were 
already sufficiently mature to provide reliable resource control and boundary separation. 
However, what was missing was a user-friendly, practical, and yet flexible way to create, 
deploy, and manage containers. Docker provided this technology. At its heart are Docker 
images, which form the basic abstraction for users to operate containers. 

Container Images and Their Storage
Docker storage can be roughly split into two main parts: client-side storage of images and 
image distribution via a central registry. In the following, we describe both of these aspects.

Docker Images and Client-Side Storage
In the majority of today’s systems, a running application expects its binaries, libraries, and 
configuration and data files to be stored and accessed through a file system. Hence, the file 
system tree is an integral part of an application runtime environment. A container image, at 
its core, can be viewed as a file system tree containing all files required by an application to 
operate. In a simple image implementation, one could copy the required file system tree to 
a directory and run a containerized application on top of it. However, when a new instance 
of the same application needs to be started, a new copy of the entire tree has to be created in 
order to keep any file changes local to each application instance. This slows down container 
startups significantly.

As a solution to this problem, Docker employs a copy-on-write (CoW) approach to speed up 
file system creation for containers. Specifically, similar to the “gold images” concept in VMs, 
Docker defines images as immutable entities. To create a fully functional—and, in particu-
lar, writable—root file system for a container, Docker makes use of technologies such as 
OverlayFS [2]. OverlayFS can create a logical file system on top of two different directories, 
also known as layers, one of which is designated as writable while the other one is read-only. 
When Docker creates a new container, the writable layer is initially empty while the read-
only layer contains the file system tree of an immutable image.
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A file in OverlayFS serves as a proxy to either a file in the image (read-only layer) or in the 
writable layer. For example, reading of a file in OverlayFS is initially redirected to the cor-
responding file in the read-only layer. However, when an application tries to update a file, 
OverlayFS seamlessly copies it to the writable layer and updates the file there. After that, 
all I/O operations to the file go to the copy in the writable layer. In such a design, starting a 
container is a breeze, as it only requires the creation of an empty writable layer and mounting 
the OverlayFS. Data copying is performed later and only on demand (copy-on-write). Figure 1 
schematically illustrates this setup.

So far, we assumed that immutable container images already exist. But how are they created 
initially? The capability to easily build images is an important property that makes Docker 
so attractive. It relies on the ability to convert writable layers to read-only layers and assemble 
an immutable image from a collection of read-only layers. Figure 2 depicts this organization. 
In Docker, an image is treated as a stack of read-only layers, where each layer contains the 
changes, at file granularity, compared to the lower layer. The lowest layer in a stack contains 
the changes compared to an empty file system. Therefore, every layer can be thought of as a 
collection of files and directories, and layers belonging to the same image comprise its entire 
file system tree. OverlayFS is capable of assembling a collection of read-only layers and one 
writable layer into a single logical file system for a running container. Besides OverlayFS, 
there are other approaches, which can support the above described storage model of Docker 
images, e.g., AUFS, device-mapper, or Btrfs. Support for each of these storage back ends is 
implemented through a graph driver.

To create a container image, one can start from an empty container, copy files to its writable 
layer, and then use the docker commit command to convert the writable layer to a read-only 
layer. As this is tedious, Docker provides the concept of a Dockerfile and the docker build 
command for convenience. In this case, Docker creates a temporary build container, updates 
its root file system using the instructions in the Dockerfile, and commits the writable layer 
(i.e., converts it to read-only) after every instruction. Images can also be created from previ-
ously built images (e.g., an OS distribution). This results in different images sharing layers 
(see Figure 2).

Registry-Side Storage
For ease of distribution, Docker images are kept in an online store called a registry. A reg-
istry, such as Docker Hub [1], acts as a storage and content delivery system, holding named 
Docker images, available in different tagged versions. Figure 3 shows the basic structure of a 
typical registry and how users interact with it. Users create repositories, holding images for a 
particular application (e.g., Redis or WordPress) or a basic operating system (e.g., Ubuntu or 
CentOS). Images in a repository can have different versions, identified by tags. The combi-
nation of a repository name (which typically also includes a user name) and a tag uniquely 
defines the name of an image.

Figure 1: Two containers X and Y running the application A from the same image
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Users can add new images or update existing ones by pushing to 
the registry and retrieve images by pulling from the registry. The 
information about which layers constitute a particular image is 
kept in a metadata file called a manifest. The manifest includes 
additional image settings such as target hardware architecture, 
executable to start in a container, and environment variables.

Each layer is stored as a compressed tarball in the registry 
and has a content-addressable identifier called a digest, which 
uniquely identifies a layer. The digest is a collision-resistant 
hash of the layer’s data (SHA-256 by default). The identifier 
allows the user to efficiently check whether two layers are 
identical, share identical layers across different images, and 
transfer only the missing layers of an image between registries 
and clients.

Clients communicate with the registry using a RESTful HTTP 
API. To pull an image from the registry, a Docker client first 
fetches the image manifest by issuing a GET request. Then the 
client uses the manifest to identify individual layers unavailable 
in local storage. Finally, the client GETs and extracts the miss-
ing layers. Pushing works in reverse order compared to pulling. 

After creating the manifest locally, the client first PUTs all the 
new layers that are not yet stored in the registry, and then PUTs 
the manifest itself.

The existing Docker registry server is a single-node application. 
To concurrently serve a high-request load, production deploy-
ments typically use a load balancer in front of several indepen-
dent registry instances. All instances store and retrieve images 
from a shared backend storage. Currently, the Docker registry 
supports multiple storage back ends such as in-memory for refer-
ence and testing purposes, file system for storing layers in a local 
directory tree, and object storage for storing layers as objects in 
popular object stores such as Amazon S3.

Challenges of Scale
The increasing popularity of containers and the shift in applica-
tion development towards cloud-native applications pose several 
challenges for Docker storage on the client and registry sides.

High Redundancy
As of March 2019, Docker Hub contains more than 2 million 
public images. Grossly underestimating, we found that those 
images would utilize more than 1 PB of storage in raw format. 
The utilization is likely several times higher as we have not 
considered all images, e.g., we omitted the ones stored in private 
repositories. Additionally, every day more than 1,500 new images 
are added. This puts pressure on the storage infrastructure, and 
it is important to understand the challenges in storing Docker 
images in order to keep registries and client-side storage scalable.

As described above, Docker employs two mechanisms to reduce 
image storage utilization: layering of images and compression. 
However, even with these space optimizations, the storage utili-
zation is still significant. Looking at the individual contributions 
of each mechanism on the 10,000 most popular images in Docker 
Hub, we found that layering provides a reduction of 1.48, and 
compression decreases the data set by an additional 2.38. Com-
bined, this results in a total reduction of 3.54. While this would 
reduce the estimated 1 PB to approximately 290 TB, storing all 

Figure 2: Two applications A and B running in two containers X and Y from two images that share two layers AB0 and AB1 between them

Figure 3: On the left: relationship between registry, users (Bob and Alice), 
repositories (Redis, WordPress, CentOS), and tagged images (v2.8, latest, 
v4.8, myOS, etc.). On the right: Docker image structure.
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images still requires a significant infrastructure budget. Using 
AWS S3 standard storage, the resulting annual cost for storage 
alone would be between $75,000 and $130,000 (depending on 
the specific AWS region) plus any additional networking costs. 
For companies that provide registries as a service, e.g., Docker 
Hub, Jfrog, Artifactory, or Quay, this is particularly problematic. 
However, even companies maintaining their own registries are 
sensitive to the high cost of the required storage infrastructure.

To reduce storage utilization of Docker images, the primary goal 
is to remove any existing redundancy in the stored data, as is 
intended by the layering of images. However, we found that this 
is ineffective in its current form [9]. In our sample data set of the 
10,000 most popular Docker Hub images, 67,047 unique layers 
still contain almost 80% duplicate files.

We believe that this is due to two main reasons. First, Docker 
images must be self-contained, contrary to earlier approaches 
for software packaging (e.g., RPM or DEB). As a result, com-
pletely unrelated images may rely on common components like 
binaries or shared libraries. In our 10,000-image data set, we 
found that libraries such as libslang, libstdc++, or libc are present  
in over 1,000 images. Second, developers create their images 
independently without exhaustively considering existing layers. 
This leads to many “almost equal” layers, i.e., layers that share 
a large number of, but not all, files with existing layers and as a 
result are not identical and so must store separate copies. That is 
not to blame developers; examining existing layers is not a task 
to be performed manually, and further, one needs to have the 
required incentives to even consider doing so.

On top of the registry storage redundancy, network traffic 
and client-side storage are also affected. Suboptimal layering 
means that duplicate data is unnecessarily transferred over the 
network, potentially increasing expensive outbound network 
traffic in a typical public cloud offering. Additional network 
traffic can increase startup times, whereas “almost equal“ 
layers can increase storage space utilization on a single client 
unnecessarily.

We proposed one approach for solving the redundancy problem 
through layer restructuring that considers both storage and net-
work utilization [6]. The approach takes the existing layers in a 
registry and constructs new layers out of the set of all files, such 
that storage space and network redundancy are minimized. Pre-
liminary results on a small, 100-image data set show that we can 
achieve storage space savings of up to 2.3. In the same paper, 
we discussed the redundancy problem in more detail and explain 
why file-level deduplication on the registry-side is insufficient.

Low Performance
While containers are, in most cases, much more performant in 
terms of startup times compared to virtual machines, new use 
cases such as serverless computing are demanding even lower 

latencies. Those requirements put pressure on the storage infra-
structure, both at the registry and the client side.

As previous work has found, pulling can contribute as much as 
76% to the overall container startup time [4]. Hence, the registry 
is a critical component in the container infrastructure and needs 
to be designed to minimize pull latencies and serve images as 
fast as possible. One direction for improving registry perfor-
mance is to exploit workload characteristics and integrate work-
load-aware optimizations in a registry’s design or configuration. 
We performed an in-depth analysis of production traces from 
the IBM Cloud Container Registry to study common registry 
workloads and drive potential optimizations [3, 5]. The analysis 
revealed several important characteristics. First, there are often 
hotspot layers, which are accessed more frequently than others, 
leading to a skewed workload. For example, at one of the registry 
sites, 59% of requests only went to 1% of the layers. Second, most 
layers are small, with 65% being smaller than 1 MB while 80% 
are smaller than 10 MB. Third, requests are correlated, i.e., if a 
client requests an image manifest from a repository and the 
repository has recently seen new layers being pushed, then these 
new layers are likely to be pulled.

These observations encourage the use of layer caching and 
prefetching optimizations to reduce registry load and pull laten-
cies. Using these lessons, we proposed a new registry design [3]. 
The design employs a two-tier registry cache and exploits the 
correlation of push and manifest pull requests to preload layers 
that are likely to be pulled into the cache. Each time a client 
requests a manifest for an image in a repository that has seen 
an update in the recent past (defined by a threshold parameter), 
the layers from the manifest are prefetched into the cache. Our 
evaluation revealed that having such an optimized backend stor-
age system for the registry can reduce the latency from 100 ms to 
10 ms for layers smaller than 1 MB.

Besides the registry, client-side storage can also affect container 
startup and runtime performance. This is particularly prob-
lematic in large-scale setups, where either many containers run 
on a single host or the same image needs to be pulled by a large 
number of nodes to run a parallel workload.

In the first case of many containers being started simultane-
ously on one host, the choice of storage driver can significantly 
impact how fast containers start and complete [7]. The most 
important property is the granularity at which the driver 
performs copy-on-write, i.e., at file- or block-granularity. For 
example, we found that for the OverlayFS driver, startup laten-
cies can reach hundreds of seconds for write-heavy workloads, 
which trigger large copies of data due to copy-on-write. As a 
result, the completion of those containers is also delayed signifi-
cantly. In contrast, drivers, which perform copy-on-write at block 
granularity (e.g., Btrfs or ZFS), did not significantly affect startup 
latencies.
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However, other workloads draw a different picture. For example, 
when running an Ubuntu dist-upgrade in 10 containers in 
parallel, file-based drivers (both OverlayFS and AUFS) out-
performed block-based drivers significantly. This could be due 
to the fact that block-based drivers are often based on native 
file systems and, hence, benefit less from the Linux page cache, 
which could slow down containers with mixed read/write work-
loads. However, we do not know the exact reason at this point.

In the case of large-scale parallel workloads, which require users 
to pull the same image on many different nodes, additional prob-
lems arise. Most importantly, pulling the same image several 
times (potentially hundreds or thousands of times depending 
on the scale of the workload) wastes network bandwidth during 
the pull and storage capacity on the individual Docker clients. 
Therefore, it is desirable to enable individual clients to collabo-
rate when pulling an image, i.e., let different clients pull differ-
ent layers of the image and only store a single copy of the image 
on shared storage such as an NFS file system. In environments 
where no local storage is available, such as an HPC cluster, shar-
ing images is a necessity to enable containerized workloads.

To enable collaborative pulling and sharing of images, Docker 
clients need to be synchronized. With Wharf, we have built such 
a system [8]. As we assume the existence of a shared storage 
system for the container images, we can use this shared storage 
to store the global state for all clients, e.g., which images have 
been pulled already, which images are currently pulled, and who 
is pulling which layer. Wharf uses additional optimizations such 
as minimizing lock contention by exploiting the layered struc-
ture of Docker images and writing image changes to local stor-
age, if available, to reduce overhead during pulling and running 
an image. For large images pulled in parallel to an NFS share, 
Wharf can improve pull latencies by up to 12 compared to a 
naïve solution, in which each client pulls its images to a separate 
location on the NFS share. 

Conclusion
Containers are expected to form the backbone of prospective 
computing platforms. However, even though individual con-
tainers are lightweight, providing and operating infrastructure 
for millions of containers is a hard challenge. In this article, we 
described how Docker stores container images and presented 
the challenges that we discovered when operating large-scale 
container deployments: high data redundancy across images, 
inefficiencies in graph drivers, low-performing registries, the 
inability to effectively use images on shared storage, and others. 
We referenced some of the possible solutions and hope that this 
article will nourish the discussion on this important topic.
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