
32    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

SRE AND SYSADMINChallenges in Storing Docker Images
A L I A N W A R , L U K A S R U P P R E C H T , D I M I T R I S S K O U R T I S , A N D V A S I L Y T A R A S O V

Ali Anwar is a research staff
member at IBM Research–
Almaden. He received his
PhD in computer science from
Virginia Tech. In his earlier

years he worked as a tools developer (GNU
GDB) at Mentor Graphics. Ali’s research
interests are in distributed computing systems,
cloud storage management, file and storage
systems, AI platforms, and the intersection of
systems and machine learning.
Ali.Anwar2@ibm.com

Lukas Rupprecht is a researcher
in the Storage Systems Group
at IBM Research–Almaden. His
research interests are broadly
related to distributed systems
for data management, including

scalability, performance, fault tolerance, and
manageability aspects. He received his PhD
from Imperial College London and holds MSc
and BSc degrees from Technical University
Munich. Lukas.Rupprecht@ibm.com

Dimitris Skourtis is a
Researcher at IBM Research–
Almaden. Prior to that
he worked on resource
management and scheduling

for ESXi at VMware. He has a PhD in computer
science from UC Santa Cruz and a masters
in mathematics from the University of St
Andrews. His interests include distributed
systems, data management, and QoS for
modern storage devices.
Dimitrios.Skourtis@ibm.com

In this article, we describe the structure of Docker images, how they are
managed by Docker clients, and how they are stored at Docker registries.
We then present several weaknesses in the current design that can cause

Docker images to consume excessive storage capacity, degrade container per-
formance, and create contention on the network and the underlying storage
infrastructure. We suggest several improvements to alleviate these problems.

At times it seems surprising that hardware virtualization, established virtual machines
(VMs), rather than software containers took precedence in the technology evolution. Indeed,
in so many practical use cases, one simply wants to run multiple isolated applications on top
of a single kernel instead of emulating an entire operating system. This lightweight approach
allows containers to start in a fraction of a second and, compared to VMs, consume much
less memory and storage, save CPU cycles, and require only a single OS license.

A number of OS-level virtualization technologies appeared in the early 2000s (e.g., Solaris
Zones, Linux-VServer, Virtuozzo), but it was only in 2013, with the advent of Docker, that
containerization started its conquest of datacenters, clouds, and human minds. By 2013, the
Linux kernel components required for containerization—cgroups and namespaces—were
already sufficiently mature to provide reliable resource control and boundary separation.
However, what was missing was a user-friendly, practical, and yet flexible way to create,
deploy, and manage containers. Docker provided this technology. At its heart are Docker
images, which form the basic abstraction for users to operate containers.

Container Images and Their Storage
Docker storage can be roughly split into two main parts: client-side storage of images and
image distribution via a central registry. In the following, we describe both of these aspects.

Docker Images and Client-Side Storage
In the majority of today’s systems, a running application expects its binaries, libraries, and
configuration and data files to be stored and accessed through a file system. Hence, the file
system tree is an integral part of an application runtime environment. A container image, at
its core, can be viewed as a file system tree containing all files required by an application to
operate. In a simple image implementation, one could copy the required file system tree to
a directory and run a containerized application on top of it. However, when a new instance
of the same application needs to be started, a new copy of the entire tree has to be created in
order to keep any file changes local to each application instance. This slows down container
startups significantly.

As a solution to this problem, Docker employs a copy-on-write (CoW) approach to speed up
file system creation for containers. Specifically, similar to the “gold images” concept in VMs,
Docker defines images as immutable entities. To create a fully functional—and, in particu-
lar, writable—root file system for a container, Docker makes use of technologies such as
OverlayFS [2]. OverlayFS can create a logical file system on top of two different directories,
also known as layers, one of which is designated as writable while the other one is read-only.
When Docker creates a new container, the writable layer is initially empty while the read-
only layer contains the file system tree of an immutable image.

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  33

SRE AND SYSADMIN
Challenges in Storing Docker Images

Vasily Tarasov is a Researcher
at IBM Research–Almaden.
His most recent studies
focus on new approaches
for providing storage as

a service in containerized environments.
His broad interests include system design,
implementation, and performance analysis.
vtarasov@us.ibm.com

A file in OverlayFS serves as a proxy to either a file in the image (read-only layer) or in the
writable layer. For example, reading of a file in OverlayFS is initially redirected to the cor-
responding file in the read-only layer. However, when an application tries to update a file,
OverlayFS seamlessly copies it to the writable layer and updates the file there. After that,
all I/O operations to the file go to the copy in the writable layer. In such a design, starting a
container is a breeze, as it only requires the creation of an empty writable layer and mounting
the OverlayFS. Data copying is performed later and only on demand (copy-on-write). Figure 1
schematically illustrates this setup.

So far, we assumed that immutable container images already exist. But how are they created
initially? The capability to easily build images is an important property that makes Docker
so attractive. It relies on the ability to convert writable layers to read-only layers and assemble
an immutable image from a collection of read-only layers. Figure 2 depicts this organization.
In Docker, an image is treated as a stack of read-only layers, where each layer contains the
changes, at file granularity, compared to the lower layer. The lowest layer in a stack contains
the changes compared to an empty file system. Therefore, every layer can be thought of as a
collection of files and directories, and layers belonging to the same image comprise its entire
file system tree. OverlayFS is capable of assembling a collection of read-only layers and one
writable layer into a single logical file system for a running container. Besides OverlayFS,
there are other approaches, which can support the above described storage model of Docker
images, e.g., AUFS, device-mapper, or Btrfs. Support for each of these storage back ends is
implemented through a graph driver.

To create a container image, one can start from an empty container, copy files to its writable
layer, and then use the docker commit command to convert the writable layer to a read-only
layer. As this is tedious, Docker provides the concept of a Dockerfile and the docker build
command for convenience. In this case, Docker creates a temporary build container, updates
its root file system using the instructions in the Dockerfile, and commits the writable layer
(i.e., converts it to read-only) after every instruction. Images can also be created from previ-
ously built images (e.g., an OS distribution). This results in different images sharing layers
(see Figure 2).

Registry-Side Storage
For ease of distribution, Docker images are kept in an online store called a registry. A reg-
istry, such as Docker Hub [1], acts as a storage and content delivery system, holding named
Docker images, available in different tagged versions. Figure 3 shows the basic structure of a
typical registry and how users interact with it. Users create repositories, holding images for a
particular application (e.g., Redis or WordPress) or a basic operating system (e.g., Ubuntu or
CentOS). Images in a repository can have different versions, identified by tags. The combi-
nation of a repository name (which typically also includes a user name) and a tag uniquely
defines the name of an image.

Figure 1: Two containers X and Y running the application A from the same image

34    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

SRE AND SYSADMIN
Challenges in Storing Docker Images

Users can add new images or update existing ones by pushing to
the registry and retrieve images by pulling from the registry. The
information about which layers constitute a particular image is
kept in a metadata file called a manifest. The manifest includes
additional image settings such as target hardware architecture,
executable to start in a container, and environment variables.

Each layer is stored as a compressed tarball in the registry
and has a content-addressable identifier called a digest, which
uniquely identifies a layer. The digest is a collision-resistant
hash of the layer’s data (SHA-256 by default). The identifier
allows the user to efficiently check whether two layers are
identical, share identical layers across different images, and
transfer only the missing layers of an image between registries
and clients.

Clients communicate with the registry using a RESTful HTTP
API. To pull an image from the registry, a Docker client first
fetches the image manifest by issuing a GET request. Then the
client uses the manifest to identify individual layers unavailable
in local storage. Finally, the client GETs and extracts the miss-
ing layers. Pushing works in reverse order compared to pulling.

After creating the manifest locally, the client first PUTs all the
new layers that are not yet stored in the registry, and then PUTs
the manifest itself.

The existing Docker registry server is a single-node application.
To concurrently serve a high-request load, production deploy-
ments typically use a load balancer in front of several indepen-
dent registry instances. All instances store and retrieve images
from a shared backend storage. Currently, the Docker registry
supports multiple storage back ends such as in-memory for refer-
ence and testing purposes, file system for storing layers in a local
directory tree, and object storage for storing layers as objects in
popular object stores such as Amazon S3.

Challenges of Scale
The increasing popularity of containers and the shift in applica-
tion development towards cloud-native applications pose several
challenges for Docker storage on the client and registry sides.

High Redundancy
As of March 2019, Docker Hub contains more than 2 million
public images. Grossly underestimating, we found that those
images would utilize more than 1 PB of storage in raw format.
The utilization is likely several times higher as we have not
considered all images, e.g., we omitted the ones stored in private
repositories. Additionally, every day more than 1,500 new images
are added. This puts pressure on the storage infrastructure, and
it is important to understand the challenges in storing Docker
images in order to keep registries and client-side storage scalable.

As described above, Docker employs two mechanisms to reduce
image storage utilization: layering of images and compression.
However, even with these space optimizations, the storage utili-
zation is still significant. Looking at the individual contributions
of each mechanism on the 10,000 most popular images in Docker
Hub, we found that layering provides a reduction of 1.48, and
compression decreases the data set by an additional 2.38. Com-
bined, this results in a total reduction of 3.54. While this would
reduce the estimated 1 PB to approximately 290 TB, storing all

Figure 2: Two applications A and B running in two containers X and Y from two images that share two layers AB0 and AB1 between them

Figure 3: On the left: relationship between registry, users (Bob and Alice),
repositories (Redis, WordPress, CentOS), and tagged images (v2.8, latest,
v4.8, myOS, etc.). On the right: Docker image structure.

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  35

SRE AND SYSADMIN
Challenges in Storing Docker Images

images still requires a significant infrastructure budget. Using
AWS S3 standard storage, the resulting annual cost for storage
alone would be between $75,000 and $130,000 (depending on
the specific AWS region) plus any additional networking costs.
For companies that provide registries as a service, e.g., Docker
Hub, Jfrog, Artifactory, or Quay, this is particularly problematic.
However, even companies maintaining their own registries are
sensitive to the high cost of the required storage infrastructure.

To reduce storage utilization of Docker images, the primary goal
is to remove any existing redundancy in the stored data, as is
intended by the layering of images. However, we found that this
is ineffective in its current form [9]. In our sample data set of the
10,000 most popular Docker Hub images, 67,047 unique layers
still contain almost 80% duplicate files.

We believe that this is due to two main reasons. First, Docker
images must be self-contained, contrary to earlier approaches
for software packaging (e.g., RPM or DEB). As a result, com-
pletely unrelated images may rely on common components like
binaries or shared libraries. In our 10,000-image data set, we
found that libraries such as libslang, libstdc++, or libc are present
in over 1,000 images. Second, developers create their images
independently without exhaustively considering existing layers.
This leads to many “almost equal” layers, i.e., layers that share
a large number of, but not all, files with existing layers and as a
result are not identical and so must store separate copies. That is
not to blame developers; examining existing layers is not a task
to be performed manually, and further, one needs to have the
required incentives to even consider doing so.

On top of the registry storage redundancy, network traffic
and client-side storage are also affected. Suboptimal layering
means that duplicate data is unnecessarily transferred over the
network, potentially increasing expensive outbound network
traffic in a typical public cloud offering. Additional network
traffic can increase startup times, whereas “almost equal“
layers can increase storage space utilization on a single client
unnecessarily.

We proposed one approach for solving the redundancy problem
through layer restructuring that considers both storage and net-
work utilization [6]. The approach takes the existing layers in a
registry and constructs new layers out of the set of all files, such
that storage space and network redundancy are minimized. Pre-
liminary results on a small, 100-image data set show that we can
achieve storage space savings of up to 2.3. In the same paper,
we discussed the redundancy problem in more detail and explain
why file-level deduplication on the registry-side is insufficient.

Low Performance
While containers are, in most cases, much more performant in
terms of startup times compared to virtual machines, new use
cases such as serverless computing are demanding even lower

latencies. Those requirements put pressure on the storage infra-
structure, both at the registry and the client side.

As previous work has found, pulling can contribute as much as
76% to the overall container startup time [4]. Hence, the registry
is a critical component in the container infrastructure and needs
to be designed to minimize pull latencies and serve images as
fast as possible. One direction for improving registry perfor-
mance is to exploit workload characteristics and integrate work-
load-aware optimizations in a registry’s design or configuration.
We performed an in-depth analysis of production traces from
the IBM Cloud Container Registry to study common registry
workloads and drive potential optimizations [3, 5]. The analysis
revealed several important characteristics. First, there are often
hotspot layers, which are accessed more frequently than others,
leading to a skewed workload. For example, at one of the registry
sites, 59% of requests only went to 1% of the layers. Second, most
layers are small, with 65% being smaller than 1 MB while 80%
are smaller than 10 MB. Third, requests are correlated, i.e., if a
client requests an image manifest from a repository and the
repository has recently seen new layers being pushed, then these
new layers are likely to be pulled.

These observations encourage the use of layer caching and
prefetching optimizations to reduce registry load and pull laten-
cies. Using these lessons, we proposed a new registry design [3].
The design employs a two-tier registry cache and exploits the
correlation of push and manifest pull requests to preload layers
that are likely to be pulled into the cache. Each time a client
requests a manifest for an image in a repository that has seen
an update in the recent past (defined by a threshold parameter),
the layers from the manifest are prefetched into the cache. Our
evaluation revealed that having such an optimized backend stor-
age system for the registry can reduce the latency from 100 ms to
10 ms for layers smaller than 1 MB.

Besides the registry, client-side storage can also affect container
startup and runtime performance. This is particularly prob-
lematic in large-scale setups, where either many containers run
on a single host or the same image needs to be pulled by a large
number of nodes to run a parallel workload.

In the first case of many containers being started simultane-
ously on one host, the choice of storage driver can significantly
impact how fast containers start and complete [7]. The most
important property is the granularity at which the driver
performs copy-on-write, i.e., at file- or block-granularity. For
example, we found that for the OverlayFS driver, startup laten-
cies can reach hundreds of seconds for write-heavy workloads,
which trigger large copies of data due to copy-on-write. As a
result, the completion of those containers is also delayed signifi-
cantly. In contrast, drivers, which perform copy-on-write at block
granularity (e.g., Btrfs or ZFS), did not significantly affect startup
latencies.

36    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

SRE AND SYSADMIN
Challenges in Storing Docker Images

However, other workloads draw a different picture. For example,
when running an Ubuntu dist-upgrade in 10 containers in
parallel, file-based drivers (both OverlayFS and AUFS) out-
performed block-based drivers significantly. This could be due
to the fact that block-based drivers are often based on native
file systems and, hence, benefit less from the Linux page cache,
which could slow down containers with mixed read/write work-
loads. However, we do not know the exact reason at this point.

In the case of large-scale parallel workloads, which require users
to pull the same image on many different nodes, additional prob-
lems arise. Most importantly, pulling the same image several
times (potentially hundreds or thousands of times depending
on the scale of the workload) wastes network bandwidth during
the pull and storage capacity on the individual Docker clients.
Therefore, it is desirable to enable individual clients to collabo-
rate when pulling an image, i.e., let different clients pull differ-
ent layers of the image and only store a single copy of the image
on shared storage such as an NFS file system. In environments
where no local storage is available, such as an HPC cluster, shar-
ing images is a necessity to enable containerized workloads.

To enable collaborative pulling and sharing of images, Docker
clients need to be synchronized. With Wharf, we have built such
a system [8]. As we assume the existence of a shared storage
system for the container images, we can use this shared storage
to store the global state for all clients, e.g., which images have
been pulled already, which images are currently pulled, and who
is pulling which layer. Wharf uses additional optimizations such
as minimizing lock contention by exploiting the layered struc-
ture of Docker images and writing image changes to local stor-
age, if available, to reduce overhead during pulling and running
an image. For large images pulled in parallel to an NFS share,
Wharf can improve pull latencies by up to 12 compared to a
naïve solution, in which each client pulls its images to a separate
location on the NFS share.

Conclusion
Containers are expected to form the backbone of prospective
computing platforms. However, even though individual con-
tainers are lightweight, providing and operating infrastructure
for millions of containers is a hard challenge. In this article, we
described how Docker stores container images and presented
the challenges that we discovered when operating large-scale
container deployments: high data redundancy across images,
inefficiencies in graph drivers, low-performing registries, the
inability to effectively use images on shared storage, and others.
We referenced some of the possible solutions and hope that this
article will nourish the discussion on this important topic.

Acknowledgments
We would like to thank our collaborators and co-authors from
academia, IBM Research, and other organizations: Ali Butt,
Yue Chang, Hannan Fayyaz, Zeshan Fayyaz, Dean Hildebrand,
Wenji Li, Michael Littley, Heiko Ludwig, Nagapramod Mandagere,
Nimrod Megiddo, Mohamed Mohamed, Raju Rangaswami,
Douglas Thain, Amit Warke, Ming Zhao, Nannan Zhao, and
Chao Zheng.

References
[1] Docker Hub: https://hub.docker.com/.

[2] OverlayFS: https://www.kernel.org/doc/Documentation​
/filesystems/overlayfs.txt.

[3] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht,
Y. Cheng, N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig, D.
Hilde-brand, and A. R. Butt, “Improving Docker Registry
Design Based on Production Workload Analysis,” in Proceed-
ings of the 16th USENIX Conference on File and Storage
Technologies (FAST ’18), pp. 265–278.

[4] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Slacker: Fast Distribution with Lazy
Docker Containers,” in Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST ’16),
pp. 181–195.

[5] M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L.
Rupprecht, D. Skourtis, M. Mohamed, H. Ludwig, Y. Cheng,
and A. R. Butt, “Bolt: Towards a Scalable Docker Registry
via Hyperconvergence,” in IEEE International Conference on
Cloud Computing (IEEE CLOUD 2019).

[6] D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo,
“Carving Perfect Layers Out of Docker Images,” in 11th
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud ’19), USENIX Association, 2019.

[7] V. Tarasov, L. Rupprecht, D. Skourtis, W. Li, R. Rangaswami,
and M. Zhao, “Evaluating Docker Storage Performance: From
Workloads to Graph Drivers,” Cluster Computing, Online
First, 2019.

[8] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed,
D. Skourtis, A. S Warke, and D. Hildebrand, “Wharf: Sharing
Docker Images in a Distributed File System,” in Proceedings
of the 9th ACM Symposium on Cloud Computing (SoCC ’18),
pp. 174–185.

[9] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D.
Skourtis, A. S. Warke, M. Mohamed, and A. R. Butt, “Large-
Scale Analysis of the Docker Hub Dataset,” in IEEE Interna-
tional Conference on Cluster Computing (IEEE Cluster 2019).

https://hub.docker.com/
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, and
working with complex distributed systems at scale. SREcon challenges both those new to the profes-
sion as well as those who have been involved in SRE or related endeavors for years. The conference
culture is based upon respectful collaboration amongst all participants in the community through
critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 15–17, 2020 • SYDNEY, AUSTRALIA
www.usenix.org/srecon20apac

OCTOBER 2–4, 2019 • DUBLIN, IRELAND
www.usenix.org/srecon19emea

MARCH 24–26, 2020 • SANTA CLARA, CA, USA
www.usenix.org/srecon20americaswest

Follow us at @SREcon

