Reliable by Design

The Importance of Design Review in SRE

LAURA NOLAN

Laura Nolan's background is
in site reliability engineering,
software engineering,
distributed systems, and

computer science. She wrote
the “Managing Critical State” chapter in the
O'Reilly Site Reliability Engineering book and
was co-chair of SREcon18 Europe/Middle
East/Africa. Laura Nolan is a production

engineer at Slack. laura.nolan@gmail.com

38 ;login: FALL 2019

VOL. 44, NO. 3

very organization has regrets about software that doesn’t scale,

that’s difficult to run, or hard to use, or where we just wish we'd done

something differently early on, when it would have been easier and
cheaper. Sometimes we need to execute fast and accrue technical debt, but
often the right thing would have been as easy and fast as the wrong thing—
and those are our failures as a profession.

In many organizations (especially larger ones), when a new system is being built or a major
change is planned for an existing system, a design (also often known as an RFC, or Request
for Comment) is written and reviewed by peer engineers. This is a document that describes
the planned change, including the reasons for making it, and alternatives to the proposed
design that were considered and rejected. The ideal level of detail is just enough that any
competent software engineer could implement the system from the design—in other words, it
should be significantly higher-level than code, while clearly describing requirements, system
architecture, dependencies, and tradeoffs.

Of course, not every change needs a design document, and people often aren’t sure where
to draw the line. My heuristic is that any project that is going to lead to the creation of new
monitoring or runbooks, or large revisions to existing ones, merits a written design. This
does not mean that failure to create required monitoring or runbooks excuses the need to
produce a design document.

I'm going to nail my colors to the mast here and say that if youre not producing designs and
participating in design reviews with partner teams, then you’re not doing SRE but some
other flavor of operations. SRE is predicated on having agency and on teams having a voice in
decisions that affect the systems they are responsible for. Without designs and a review pro-
cess, teams don’t have the insight they need into the changes that others are planning in the
production environment, so having that voice in significant decisions becomes impossible.

Written designs have many advantages over informal discussion or presentations. As an
author, the written form pushes you to think through details that you might not otherwise
spend enough time on. As a reviewer, it gives you time to reflect on the proposed change. It
also works better for distributed teams, because feedback can be given and responded to in
an asynchronous manner. A long-term advantage of written designs is that they can provide
a history of major changes in your organization’s systems as well as the reasons behind them
and the decisions made. Over time, the reality of your systems will diverge from original
designs, but an archive of design documents will still be a valuable resource.

The design review process can be problematic in a few ways on a human level. One problem is
time: feedback on designs may drag on for several weeks if there are many interested review-
ers. I recommend setting a clear deadline for feedback (in the header of the document itself).
Around two or three weeks is ample. If there are unresolved discussions at this point, then
schedule meetings to discuss (either one meeting or multiple one-to-one meetings). This will
save time overall, and it is easier to resolve technical disagreements face to face.

Another big problem is the use of the design review process to show off, debate matters of
taste, or nitpick. This kind of behavior makes people reluctant to write and share designs,

Www.usenix.org

COLUMNS

Reliable by Design: The Importance of Design Review in SRE

and the resulting failure to communicate leads to repeated

work, alack of shared understanding, and failures to catch

major problems that colleagues would have noticed. Design
review comments should be well intentioned and solely about

the important points in the design rather than the color of the
proverbial bike shed. Think carefully before commenting. Many
large organizations develop norms and guidelines for technical
discussions, including pointing out and discouraging this kind of
“bike shedding.”

I've never seen much guidance on how to perform design reviews
as a peer engineer or as a technical lead. People tend to read the
document and apply their expertise in an ad hoc way. As some-
one who has reviewed a fair number of such designs, I've found
that it’s time-consuming, and I often worry that there’s some-
thing important I haven’t thought about. There’s no structured
way to approach the problem.

Atul Gawande’s book The Checklist Manifesto [1] may point
towards a solution. Gawande is a surgeon. He noticed that it was
very common to make errors in complex surgical procedures. He
distinguished between two kinds of errors: errors of ignorance,
where not knowing something causes a mistake, and errors of
ineptitude, where we don’t make proper use of what we know. In
the modern world, surgery is such a complex task that forgetting
steps, or failing to plan ahead for some eventuality, is almost
inevitable. Gawande looked at what other professionals do—in
professions like civil engineering and aviation—and it turns out
they use checklists to avoid errors of ineptitude.

Checklists may sound like a tedious process—and nobody really
likes more process—but bear with me. Surgical checklists are
not a substitute for professional expertise. In fact, they abso-
lutely require that expertise to execute them. They are not long
manuals that prescribe every detail of every step in a process but
instead are prompts, intended to make sure you don’t acciden-
tally leave out a key step in a complex task. Surgical checklists
are quite short, leaving minutiae to the judgment of those using
them; the WHO safe surgery checklist [2] fits on one page,
although it does refer to other checklists that may need to be
consulted under certain circumstances.

It turns out that well-crafted checklists make a big difference in
surgical outcomes—a 2009 study showed that the WHO check-
list reduced the incidence of post-surgical complications by a
third. In addition to making sure basic (but important) things
aren’t forgotten, they also encourage and empower all members
of'a team to point out omissions or problems. They can make
teams work better.

I believe checklists can help us improve our system designs
too. There is a lot of wisdom in the SRE profession about how
to design operable, scalable, reliable, distributed systems. We
can add a lot of value at this stage of the process. But there’s no

WWWw.usenix.org

checklist to help us do it. What might such a checklist look like?

Here’s my version [3]:

¢ What and why: do T understand the need for the change, the
design itself, and how the proposal relates to other systems?

¢ Who: are there affected teams that haven’t been asked to look
at this design? If there are privacy or security implications of
this system, are there appropriate reviewers?

¢ Alternatives considered: is building a new system the right
approach?

Stickiness: what’s hard to change about the proposed system?

¢ Data: consider consistency, correctness, encryption, backup,
and restore strategies.

¢ Complexity: where is this design overly complex, and can that
complexity be reduced?

¢ Scale and performance: how does the design support the
scale and performance needed?

¢ Operability: how will the system support (or not) the humans
running it?

¢ Robustness: how does the design handle failures, and other
issues such as overload?

This high-level checklist is fairly terse, as a usable checklist
needs to be—remember, this is here to prompt your expertise,
not to replace it. For some designs, some sections of the check-
list may not apply—maybe the design in question is a piece of
automation that doesn’t need to scale, or a stateless service that
doesn’t need to deal with some of the data considerations. The
sections below give more detail for each item on the checklist
and, in some cases, further sub-checklists.

The what and why questions are first because they are the
most important. If you read a design and don’t understand it
and why it’s needed, then the design is missing information or
lacking in clarity. If you don’t understand it when you're reviewing
the design document, you definitely won’t understand it when
you're trying to respond to a production fire. The best way for-
ward here is to tell the author which parts you’re having trouble
with and ask them to update the document before proceeding.

Next, who:

¢ Isthere agoodreason that you've been asked to review this
system? It’s good to understand whether the author is look-
ing for some particular expertise or perspective from you, and
make sure you've addressed that.

¢ It’'salsouseful to check who else has been asked to review and
that all the affected teams have been asked. Support or opera-
tions teams are often left out to the detriment of all involved.
Owners of systems that the new system will depend upon
should usually be asked to review new designs.

¢ Many changes should be reviewed specifically for privacy and
security.

;login: FALL 2019 VOL. 44,NO.3 39

COLUMNS

Reliable by Design: The Importance of Design Review in SRE

Alternatives considered is a subject often neglected but
important:

*

Is there an open-source tool, or a similar proprietary system at
this organization, that might work? If so, did the author of the
design talk to owners of those similar systems about this use-
case? Proliferation of systems is hugely costly. It takes time to
build and maintain them, and it complicates an organization’s
production environment.

Stickiness: give special consideration to thinking about which

aspects of a proposed system will be hard to change in the future.

L 4

Imagine you're trying to migrate all the users of the system
away from it to its replacement or that you're planning a major
change of some sort. What aspects of the design will make that
easier or harder? For example, allowing users to extend your
code limits what you can do in the future and makes migrating
them to replacement systems much more difficult, and so does
tight coupling with other systems.

What assumptions are baked into the architecture or the data
model that might change in the future?

Data:

*
L 4

® 6 6 6 0o o

*

What is the flow of data through the system?

What are the data consistency requirements, and how does
the design support them?

Which data can be recomputed from other sources and
which cannot?

Is there a data loss Service Level Objective (SLO)?

How long does data need to be retained, and why?

Does it need to be encrypted at rest? in transit?

Are there multiple replicas of the data?

How do we detect and deal with loss or corruption of data?

How is data sharded, and how do we deal with growth and
resharding?

How should data be backed up and restored?

¢ What are the access control and authentication strategies?

Co
°

40

Have relevant regulations such as GDPR and any data
residency requirements been addressed?

mplexity:
Does each component of the system have a clearly defined role
and a crisp interface?

Can the number of moving parts be reduced?

Is the design similar to existing systems at this organization?
Is it built using standard building blocks (K/V stores, queues,
caches, etc.) that engineers at this organization already under-
stand? Does it use the same kinds of plumbing such as RPC
mechanisms, logging, monitoring, and so on?

Does the proposal introduce new dependencies (e.g., uses a
different type of message queue than other systems in the same
organization) and if so, is that really necessary?

;login: FALL 2019 VOL. 44, NO. 3

Scale and performance:

L 4

*

What are the bottlenecks in this system that will limit its
scale and throughput (not forgetting the impact of writes
and locking)?

What's the critical path of each type of request, and how do
requests fan out into multiple sub-requests?

What is the expected peak load, and how does the system
support it?

What is the required latency SLO, and how does the system
supportit?

How will we capacity plan and load test?

What systems are we depending on, and what are their per-
formance limits and their documented SLOs?

‘What will it cost to run financially?

Operability:

*

How does the design support monitoring and observability?
For instance, systems involving queues may require extra care
in monitoring.

Do all third-party system components provide appropriate
observability features?

‘What tools will be available to operators to understand and
control the system’s behavior during production incidents?
How will these tools make clear to the operator what specific
actions they should take to avoid surprises?

‘What routine work is going to be needed for this system? Which
team is expected to be responsible for it? How much of it can
and should be automated, and will that automation reduce the
operating team’s understanding of the system?

How do we detect abusive users or requests, and what action
can we take in response?

Ifthe design involves relying on third parties (such as a cloud
provider, hardware or software vendor, or even an open-source
community), how responsive will vendors be to your feature
requests or problems?

o Are all configurations stored in source control?

Robustness:

*

How is the system designed to deal with failure in the various
physical failure domains (device, rack, cluster/AZ, datacenter)?

How will it deal with a network partition or increased latency
anywhere in the system?

Are there manual operations that will be required to recover
from common kinds of failure?

How could an operator accidentally (or deliberately) break the
system?

Is there isolation between users of the system?

What are the smallest divisible units of work and data, and will
we likely see hotspotting or large shards?

‘What are the hard dependencies of this system, and can we
degrade gracefully? How to ensure soft dependencies don’t
become hard dependencies?

WwWww.usenix.org

COLUMNS

Reliable by Design: The Importance of Design Review in SRE

¢ How can we restart this system from scratch, and how long will These are the things I think about when reviewing a design. No
that take? Do we depend on anything that might depend on this two systems are the same, so not all of these questions make
system? Don’t forget DNS and monitoring. sense for every type of system. As with the WHO surgical safety

¢ How will this system deal with a large spike of load? checklist, local variations are very much encouraged. Thisis a

+ Does the system use caching, and if so, will it be able to serve at starting point [3].

; i 2
increased latency without the cache? All systems involve risk, and all systems make tradeoffs. Better

¢ Isthe control plane fully separate from the data plane? system design won’t eliminate all problems. We just can’t antici-

Can T canary this design effectively (e.g., leader-elected designs pate everything—errors of ignorance are inevitable. But errors of
are hard to canary)? ineptitude are avoidable, and part of maturing as a profession is

¢ Canthis system break its back ends by making excessive getting more systematic about reducing errors of ineptitude.
requests?

A good design helps us to understand tradeoffs and risks more
thoroughly and make reasoned, deliberate choices that make the
most sense for our organizations. Taking the time now to write a
design for your team’s next big project and get it reviewed by your
peers might be the most impactful work you can do.

¢ Canthis system autonomously drain capacity, and how have
risks been managed, in particular with respect to human
operators’ ability to understand and control the system?

¢ Can this system autonomously initiate resource-intensive
processes like large data-flows (perhaps for recovery purposes),
and how are those risks managed?

¢ Can this system create self-reinforcing phenomena (i.e., References

vicious cycles)? [1] A. Gawande, The Checklist Manifesto: How to Get Things
Right (Metropolitan Books, 2009).

[2] WHO Safe Surgery Checklist: https://www.who.int
/patientsafety/safesurgery/checklist/en/.

[3] L. Nolan, SRE Reliable by Design checklist: https://www
.usenix.org/sites/default/files/fall19_sre_checklist.pdf.

wWww.usenix.org ;login: FALL 2019 VOL. 44,N0O.3 41

https://www.who.int/patientsafety/safesurgery/checklist/en/
https://www.who.int/patientsafety/safesurgery/checklist/en/
https://www.usenix.org/sites/default/files/fall19_sre_checklist.pdf
https://www.usenix.org/sites/default/files/fall19_sre_checklist.pdf

