
42    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

COLUMNS

Python News
P E T E R N O R T O N

In this column, I’m covering a bit of Python news, with some info about
type checking in more depth.

Time for Python 3
For years now it’s been made very clear that Python 2 is coming to the end of support—this
was put in writing in PEP 373 [1] . The original date was pushed back to 2020 to give every-
one some more time to move to Python 3. Most projects that are still actively maintained
have put in the effort to support Python 3, and Python 3 hasn’t been standing still. It’s adding
features like async support and syntax for supporting static type checking (more on this in a
moment) that makes it a more modern language than Python 2.

To put the cherry on top, now that it’s almost 2020, developers of some prominent Python
projects have announced that they’re going to discontinue support for Python 2 in future
release of their project. In case your projects could be affected by this, go take a look at the
projects listed at the Python 3 Statement website (https://python3statement.org/). Many
fundamental projects have decided that after performing the work to be compatible with
both Python 2 and Python 3 for some time (years and years in some cases), they want to
reduce their workload by just supporting Python 3. This seems only fair. Python 2 has had an
extraordinary lifetime, and now it’s time to retire it with grace. I encourage you to take a look
at python3statement.org and to understand if the projects you rely on directly or indirectly
will impact your work, and to plan accordingly.

Type Hints in Python 3
I’m in a situation shared by many of my peers where we’re still planning our transition to
Python 3 for most of our infrastructure code. As part of getting our stories together for
upgrading, I’m thinking about the fun stuff that has been created as Python 2 has gone stale.

So I’d like to take a look at one of these cool features I’m anxious to put to good use: static
type checking. Static type checking in Python makes it possible for a process that reads code
to check that all types passed into a function, and all return values from the function, are
appropriate, and alert the developer to deviations that would cause bugs. By using static type
checking, you can eliminate a lot of bugs without ever having to run the program. In the way
Python implements this, the static checker is an external process—it’s not Python itself that
checks it before running. So whether or not you use this feature, your code will still run.

Some languages have incorporated static type checking from the outset, but this is not how
Python was developed. Historically, Python is among the languages that is dynamically
runtime type-checked, which means that it’s common to have crashes when there is a severe
enough type mismatch. Because of the way that static type checking is being added to Python
late in its development, its power to catch problems has been limited by speed of development
of the type checking tools, and the rate of adoption and use of those tools. The tools are actu-
ally being developed at a really fantastic pace, but many libraries and other code bases can
only adopt type checking as they move to recent Python 3 versions.

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  43

COLUMNS
Python News

We’ll look at the basic idea of static type checking in Python and
at a cool feature that could be added. Unfortunately, this column
is not going to be able to cover Python type-checking features in
depth. For that there is a lot of excellent documentation written
on how static type checking can be used in recent versions of
Python when you’re ready to use it—the official documentation
is thorough and very deep. So that’s not what I’m going to write
about here.

The basic observation that makes static type checking attrac-
tive is that as a Python programmer you know that the following
code will run:

def badlen(container):

 return len(container)

but you also know that the built-in len() is only useful on certain
types. You probably also know that objects of those types have
the dunder (double underscore) method __len__() to provide
their length. And you also know that invoking the len() built-in
function on an inappropriate type causes a runtime TypeError:

>>> badlen(7)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 2, in badlen

TypeError: object of type 'int' has no len()

People who come from static (type-checking-wise) languages
often look at Python and its peers and ask why this is accept-
able, when clearly other languages can catch this sort of error
before they are ever run. The obvious answer is that part of what
Python provides is a very dynamic programming environment
where a lot of the knowledge required for static checking is not
possible. The success of Python makes it clear that static type
checking isn’t the most important feature to make the language
usable and productive.

Since compile-time type checking promises to reduce or elimi-
nate this class of error, it would make Python better to have it,
so a lot of work went into discussing what would be necessary to
add it without causing any extra work for people who won’t use it
while bringing benefits to people who do want it.

The guiding principle behind Python development has long been
that, to the extent possible, Python should try to advance with
backwards compatibility in mind. To this end, a bit of syntax
was created and specified which allowed function annotations
in PEP 3107 [2]. With that in place, PEP 484 was hashed out;
it introduced a standard for type “hints” using the PEP 3107
annotations. Although allowing us as developers to communi-
cate what the type is, the interpreter in effect completely ignores
all of this information at runtime. Instead, its purpose is to allow
tooling to be built to verify that annotated functions comply with

the types that are described. With these checkers in place, even
better tests can be created.

So with the introduction of PEP 484 and a common standard
for type hinting, tools can be built ensuring that functions are
using type hints to get the right input types and therefore are
returning the right output types.

This might seem like a small refinement of a very popular
language; after all, Python isn’t the only language that has suc-
ceeded by growing its user base without static type checking.
However, statically checkable, and therefore avoidable, type
errors are a very common source of bugs, so in the long term, opt-
ing into this is likely to be a huge benefit to those who use it.

So what do type hints look like? They can change the declaration
of a variable in a function call, for example, from variable_name
to variable_name: type, like this:

def betterlen(container: list):

 return len(container)

That tells the type checker that the function takes a list. Usually
lists are of a particular type, though, and we can ask the type
checker to check for an appropriate type of list, or we can make
it clear that we’re not concerned about the type of list. This is
normal Python behavior. To make this possible, there is the typ-

ing module, which provides definitions of objects that the type
checker can use to allow you to declare how thoroughly you want
to check your lists, dictionaries, or other container types.

To enable this, you include the typing module in your code and
import type specifications, which provide the specificity for
the structure and types of the things they contain. In this case,
we’re going to start with a specification of Any, which explicitly
says “accept that this list can contain elements of anything, it’s
fine.” But this could also be used to be more specific about only
particular built-in types or user-defined types. It looks like this:

from typing import Any, List

def goodlen(container: List[Any]):

 return len(container)

By invoking a static analyzer (mypy in this case) on a chunk of
code with a type mismatch, like this:

goodlen(7)

it can describe the problem it sees without actually running
the code:

$ mypy simply_doesnt_work.py

simply_doesnt_work.py:8: error: Argument 1 to "goodlen" has

incompatible type "int"; expected "List[Any]"

44    FA L L 20 19  VO L . 4 4 , N O. 3 	 www.usenix.org

COLUMNS
Python News

Whee! That was pretty easy. For a basic introduction, the next
step is to go one more step and specify the return value, which we
haven’t done yet. We want to specify the return type, too, because
the current state of the goodlen() function creates a dead-end
for the type checker. Because the return type isn’t declared, the
type checker graph bottoms out and can’t do further checking at
this point.

So to help the checker, you can add a return type simply by add-
ing a -> type. For a length, we’ll always be returning an integer; a
simple case looks like this:

def betterlen(container: List[Any]) -> int:

 return len(container)

The more annotations that are added to a code base, the more
automatically simple but critical mistakes can be avoided before
your code is ever run.

By itself, this has benefits for unit and integration tests. You
can just start adding harmless annotations, and start to check
whether your libraries, dependencies, etc. are doing the right
thing.

But there’s another very interesting thing that is possible, which,
hopefully, Python will adopt in the future. It’s presently available
in Rust, so let’s use that as the example.

You may have heard of Rust, the language, since it’s received a
lot of attention since it hit 1.0 in 2015. In case you haven’t had a
chance to look into it, I think it’s fair to say that its goal is to be
a language that can achieve the performance and control of C or
C++, while providing the memory safety of a garbage-collected
language like Java, Python, or Go. In addition, Rust also elimi-
nates other risks present in most other mainstream program-
ming languages.

As part of providing this attractive sounding set of goals, Rust
includes strong compile-time type checking as a fundamental
feature. Rust also incorporates a very interesting idea: exhaus-
tive checking of all possibilities in a match (as I understand it,
this originated in the ML languages). This is needed because a
lot of bugs are created when a series of conditional statements—
e.g., in Python an if... elif... else—is produced that due to
oversight, or changes in the set of possible choices, ends up not
covering all of the possibilities.

To make this work, Rust uses a clever trick. The implementation
of this clever trick is the match expression, which is like a case
or a switch in other languages. But instead of being just another
way of writing if...else if...else if...else, it makes sure that when a
match is invoked, it can identify that all possible matches have
been covered. So if the type being matched is an unsigned 32-bit
integer, then the compiler knows that if you haven’t specified
either all numbers from 0 to 232-1 or used a default match (Rust

does this with the underscore target in a match—this is the
equivalent of an else in Python), then you have left possible
values which haven’t been accounted for, and it will refuse to let
that code compile or run.

Another clever extension is combining this with enums, or an
enumerated set of possible values that are declared up-front.
With an enum, the compiler knows whether or not all possible
arms of the possible matches with enum values have been
checked, because the enum can only have a fixed number of pos-
sibilities. A quick example of what this could look like in Rust is:

enum BreadSpreads {

 Butter,

 Margarine,

 CreamCheese,

 Nutella

}

fn breakfast_bread(spread: BreadSpreads) {

 println!("Breakfast bread with {}",

 match spread {

 BreadSpreads::Butter => "butter",

 BreadSpreads::Margarine => "margarine",

 BreadSpreads::CreamCheese => "cream cheese",

 BreadSpreads::Nutella => "nutella"

 }

)

}

fn main() {

 let butter_spread = BreadSpreads::Butter;

 let margarine = BreadSpreads::Margarine;

 breakfast_bread(butter_spread);

 breakfast_bread(margarine);

}

This is very straightforward and not particularly noteworthy
when it is working. What is more interesting is that if you change
the breakfast_bread function by removing any of the arms of
the match (let’s use Margerine for this example), the compiler
will refuse to compile it. It will tell you that the code is broken
and save you from having to discover the problem in production:

$ cargo build

 Compiling breadspread v0.1.0 (/home/spacey/dvcs/pcn/login/

2019-6/breadspread)

error[E0004]: non-exhaustive patterns: 'Margerine' not covered

 --> src/main.rs:10:15

 |

1 | / enum BreadSpreads {

2 | | Butter,

3 | | Margerine,

 | | --------- not covered

www.usenix.org	   FA L L 20 19  VO L . 4 4 , N O. 3  45

COLUMNS
Python News

4 | | CreamCheese,

5 | | Nutella

6 | | }

 | |_- 'BreadSpreads' defined here

...

10 | match spread {

 | ^^^^^^ pattern 'Margerine' not covered

 |

 = help: ensure that all possible cases are being handled,

possibly by adding wildcards or more match arms

error: aborting due to previous error

For more information about this error, try 'rustc --explain

E0004'.

error: Could not compile 'breadspread'.

This feature of the Rust compiler works because the set of
possible enums can’t change once they’ve been declared. Of
course, being able to change that after runtime would break
guarantees that Rust provides with this little trick. So gener-
ally, the compiler looks at the match to make sure that you have
accommodated each possible variation that the enum could take,
because as an enum those possibilities are, well, enumerated in
the code. In addition, as with most case/switch/if...then...else
constructs, you have the equivalent of an else clause, so this need
for an exhaustive match doesn’t require you to write out a match
for every possible case individually. It just requires that you don’t
leave off the equivalent of the else clause and leave cases uncov-
ered. It doesn’t protect the programmer from every mistake, but
it prevents cases from being missed.

So it’s interesting to ask, would this be possible in Python and
how much would it help? And what would it look like if it was
being used? Until recently the nearest available data types to
structures and enums are dictionaries or sets (or possibly classes
built on these), however these are not static enough, so they can’t
be used for this kind of type checking. There is no mechanism for
the type checker to exhaustively test all of the possible varia-
tions with a dictionary, for instance, since the possibilities are
unknowable at check time.

So since there are are other motivations to want an enumeration
type, PEP 435 [4] was written and proposed, and an enumera-
tion type was added in Python 3.4. Since this piece is in place,
it seems likely that there will be a way in the near future to ask
Python type checkers to exhaustively check enums and to alert
to this common type of bug.

I expect that the static type checking features of Python 3 will
improve and provide better safety in the future. I think it’s
interesting to think about how the type checkers could influence
future programming practices in Python. It could become more
common for Python to develop recommended idioms that will
help to restrict the breadth of possible mistakes we make, simi-
lar to being able to check all branches of if/elif/else statements
to provide better information for a static type checker to feed
on. It will be interesting to see whether or not some of the ideas
of what’s Pythonic will change based on what’s best for modern
type checking.

References
[1] PEP 373: https://www.Python.org/dev/peps/pep-0373/.

[2] PEP 3107: https://www.Python.org/dev/peps/pep-3107/.

[3] PEP 484: https://www.Python.org/dev/peps/pep-0484/.

[4] PEP 435: https://www.Python.org/dev/peps/pep-0435/.

https://www.Python.org/dev/peps/pep-0373

