GOLUMNS

Using SQL in Go Applications

CHRIS "MAC” MCENIRY

Chris "Mac" McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He's been

working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

WWWw.usenix.org

any applications work on some set of local data. Even some com-

mand line applications need to keep data across invocations. Flat

files in a columnar or JSON format work for many cases. However,
it can get to the point where a more structured approach can make life easier.
SQL databases are the typical next stopping point for a structured approach
to data.

Go has a generic interface around SQL with database/sqglin the standard library. The inter-
face supports drivers which provide the backing to common database technologies. A list of
common drivers is available on the Go wiki: https://github.com/golang/go/wiki/SQLDrivers.
While most of these are dependent on an external data service, one, SQLite, is not.

SQLite is a self-contained SQL database engine. It stores its data in a file, which makes it
easy to embed in local applications. The underlying implementation is in C and has many
common language bindings, including several for Go. In Go, this does require cgo support
which should, in general, work. However, be aware that it may require additional C compiler
binaries to be installed, and cross compilation will require even more.

In this article, we're going to work with the Go SQL interface, specifically the github.com
/mattn/go-sqlite3 driver.

The code for these examples can be found at https://github.com/cmceniry/login in the sql
directory. This code is using dep for dependency management, but this should work with Go
modules as well. After downloading the code, you can run each example directly from the
main package’s directory (Login/sql) with go run EXAMPLE/main.go. The examples use the
same example database which will get created in the main package’s directory. If you change
directories out of that, it may get confused.

Note: As mentioned, you may also need to install SQLite development packages in your envi-
ronment to complete these examples.

The SQL Interface

The SQL interface provides a simple way to perform the most common SQL methods: open
and close a database, execute a Data Definition Language (DDL) or Data Manipulation
Language (DML) statement, and perform a query. SQL abstracts away much of the overhead
such as connecting to the database, handling connection pooling, and performing connection
cleanup.

Since it is an interface, the expectation is to interact with all databases the same way,
regardless of back-end driver.

;login: FALL 2019 VOL. 44,NO.3 49

COLUMNS

Using SQL in Go Applications

Import
The database/sql driver mechanism relies on the blank identi-
fier, ,import. All of the examples use this import format.

import (

"database/sqgl"

_ "github.com/mattn/go-sqglite3"
)

As normal, the blank identifier indicates to ignore an item. In
this case, it’s ignoring all of the exported identifiers from the
go-sqlite3 package. Our code will not be using any of the pos-
sible functions or variables from go-sqlite3 directly.

However, the normal import actions still happen. This includes
the variable definitions and initialization mechanisms. Inside
the go-sqglite module is an init function. On the first import of a
package, it runs this init function. In this case, it registers itself
with the database/sql drivers available and makes it available
as a back end.

github.com/mattn/go-sqlite/sqlite3.go.

func init() {
sgl.Register("sqglite3", &SQlLiteDriver{})
+

Other libraries enhance the Go runtime using the blank identi-
fier. The standard HT'TP profiling library, net/http/pprof,is
another example of alibrary that you do not call directly. This is
a practice that you can use for your code, but use it with caution.

Note: There is a common order to how the init functions (and
package-level variables) are run: imported packages and then
alphabetical by package file within a package. However, it is still
very easy to put yourselfin a situation where you are attempting
to use them in a different order.

Creating a DB
In our first example, we will create a simple database. The data-
base will be defined with a simple schema:

create/main.go: schema.

var schema = CREATE TABLE sample (
i INTEGER,
s TEXT,
t DATETIME DEFAULT CURRENT_TIMESTAMP
)

With this schema in hand, we can start initializing our database.

We begin our main function with a call to open the database.
The arguments to Open tell the SQL interface which driver to
use with which options. The options are specific to the driver—
write,” and “create.” We then rely on Go’s
defer mechanism to ensure that we close the database when

»

in this case, “read,

we're done.

50 ;login: FALL 2019 VOL. 44,NO.3

create/main.go: opencreate,close.

func main(O) {
db, err := sql.0Open("sqglite3", "file:testdb?mode=rwc'")

defer db.Close()

With the open database, we now create our schema in it. We can
call the Exec function on the database and pass in the schema
string as the argument. Exec returns two values—a result and an
error. The result is meaningless for DDL statements, so the main
concern here is to receive the error. For the example, handling
the erroris a simple panic.

create/main.go: exec.

_, err = db.Exec(schema)
if err = nil {
panic(err)
+
We will see this same Exec function in the next example and will
examine the result.

Insert

Once the database is initialized, we can start feeding data into
it. Since this is a new process, we need to reopen the database.
In this case, we don’t want to create it, so we will leave off the
“create” option to open.

insert/main.go: open,close.

func mainO {
db, err := sql.0pen("sqlite3", "file:testdb?mode=rw")

defer db.Close()

With the open database, we can add data to it like any other
SQL data addition—INSERT. As with the previous example, we
use the Exec function to perform the insert. The first argument
to Exec is the SQL statement to execute—in this case, a simple
insertinto the sample table of an integer and a string. While
SQLite uses dynamic typing, we're still using parameterized
bind variables, ?, instead of combining our values directly with
our SQL statement. This provides two large benefits: First, we
do not have to handle the type conversion into the statement.
(This type handling will show up again in the next example,
query.) Second, this form is much less susceptible to SQL injec-
tion attacks. The remaining arguments to Exec are bound to the
respective positional 2. Exec is variadic in that the number of
arguments is dependent on the SQL statement.

insert/main.go: query.

res, err := db.Exec(
"INSERT INTO sample (i, s) VALUES (2, D",
2,
non

WwWww.usenix.org

COLUMNS

If'there is a syntax or back-end issue, an error will be returned.
After checking the error, we also want to confirm how many
rows were inserted. For inserts, this may not matter as much,
but in other cases (SET) it can indicate an issue in data or logic.
We obtain the numbers of rows inserted with the RowsAffected
method of our result.

insert/main.go: rows.
affected, err := res.RowsAffected()
With the value in hand, we can print it out and visually inspect it.
insert/main.go: print.
fmt.Printf("%d row(s) inserted\n", affected)
The output of this should be fairly simple:

$ go run insert/main.go
1 row(s) inserted

RowsAffected is really the only indicator of the impact of your
SQL statement, and may or may not be interesting depending
onyour situation. If you alter the insert statement to include
additional VALUES pairs, it will increase accordingly. It can also
be more than one for SET statements which affect multiple lines.
It can even be zero in the cases where no rows match, indicating
alogic or data error.

Query

In our final example, we're going to pull previously inserted data
back out of the database. As in the previous insert example, we
will see inferred type conversion.

As before, we start the main function by opening the database.
query/main.go: open,close.

func mainO {
db, err := sql.0Open("sqglite3", "file:testdb?mode=rw")

defer db.Close()

Next we use the Query function to submit our SQL statement.
Query behaves very similarly to Exec. It is variadic. The first
argument is our SQL query statement, which may contain bind
variables, 2, in the WHERE clause. Any additional arguments are
bound to their positionally respective bind variables. Yes, the
DATE(t) < DATE(?) is a bit superfluous but is included for demon-
strative purposes.

query/main.go: query.

rows, err := db.Query(
SELECT 4, s, t FROM sample WHERE DATE(t)
<= DATE(?), time.NOWQ),
)

WWWw.usenix.org

Using SQL in Go Applications

If the query is successful, a result set is returned. Behind the
scenes, the SQLite package creates a cursor which holds the
location of the data—relative to both the query result processing
and its location in the database file. To avoid consistency issues,
this also locks the database until this query is complete. The
indicator that the query is complete is with a Close on the result
set. For this simple example, we can release the statement when
we finish the function, so we use Go’s defer mechanism.

query/main.go: stmtclose.
defer rows.Close()

Now we can process the returned rows by iterating through the
rows. To move through the cursor, we call the Next function. The
Next function updates the underlying cursor information for the
next unprocessed row. The Query does not do this initially, so a
first call to Next is required to even begin to access data. This
also allows ustowrapitallina forloop.

query/main.go: next.
for rows.Next() {

With the cursor properly in place for our next row, we can pull
all of the values out of the row. We need a place to store the data
local to our code, so we start by defining some variables. We then
pass pointers for those variables into the Scan function, which
will set them as appropriate. In addition to providing a place for
the data, using pointers to our variables allows for Scan to cast
the row values into the appropriate type. Scan is also variadic,
and the position of arguments to it are the respective positions
for the fields in the SELECT statement.

query/main.go: scan.

var i inté4

var s string

var t time.Time

err := rows.Scan(&i, &s, &t)

Now we can print the results out.
query/main.go: printout.
fmt.Printf("%s: %d %s\n", t, i, s)
An example output of this looks like:

2019-06-15 13:21:06 +0000 UTC: 1 1
2019-06-15 13:21:11 +0000 UTC: 1 1
2019-06-16 18:03:38 +0000 UTC: 1 1
2019-06-17 04:44:27 +0000 UTC: 11

;login: FALL 2019 VOL. 44,N0O.3 51

COLUMNS

Using SQL in Go Applications

Conclusion

In these examples, we've explored the database/sql package and
an accompanying driver for it, the github.com/mattn/go-sqlite3
for SQLite. In addition to what has been demonstrated here,
the database/sqgl package and the various back ends provide
other features—interrogating the columns and arbitrary results,
handling timeouts with Context, direct creation of prepared SQL
statements, and many more. You can dig into the Go SQL inter-
face at http://go-database-sql.org.

Sometimes data gets complex enough that writing flat file parsers
becomes tedious. Sometimes you have to interact with an exist-
ing application database. Go’s SQL interface provides a simple
way to interact with many different types of SQL databases. I
hope this has given you a good basis for using SQL when needed.
Good luck, and Happy Going.

é«’ usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

USENIX Supporters

USENIX Patrons
Bloomberg - Facebook « Google « Microsoft « NetApp

USENIX Benefactors
Amazon « Oracle « Two Sigma « VMware

USENIX Partners
Cisco Meraki « ProPrivacy « Restore Privacy - Teradactyl - TheBestVPN.com

Open Access Publishing Partner
Peer)

52 ;login: FALL 2019 VOL. 44,NO.3

WwWw.usenix.org

