
2    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org Imagine you are charged with defending the security of one or more sys-

tems, yet must also allow other people to run the code of their choice on
your systems. I could be talking about your web browsers, those sources

of malware infections, but my focus is actually public clouds.

Public clouds offer customers the ability to run any software that is not openly hostile through
behaviors like port scanning or launching denial-of-service attacks. That leaves a lot of
leeway for various mischief on the hosts they run on, especially if those hosts are running
containers or cloud functions—lambdas in AWS-speak.

The initial way of strengthening security for containers was to run each customer’s contain-
ers on top of a kernel running in a virtual machine (VM). VMs rely on hardware-based secu-
rity, and while Sun, HP, IBM, and SGI had hardware support for VMs on or before the 1990s,
Intel and AMD support appeared in 2005. Hardware support placed guest operating systems
in a privilege ring above the virtual machine monitor (VMM), meaning that the VMM had
control over the hardware and its treasures: CPUs, memory, storage, and networking.

But running containers inside of VM guests means that cloud vendors lose a lot of what they
wanted to gain from container technology. They can’t start up containers wherever they want
to, as they are constrained by a customer’s VM instances. And VMs are slow to start, taking
seconds, and require at least an order of magnitude more memory and other resources than
lightweight containers. Thus began a quest for more efficient ways of hosting containers.

One early example was NEMU, a stripped down version of QEMU, the open source system
emulator. NEMU runs as a process, like QEMU, but instead of having all of the capabilities of
QEMU, NEMU dispenses with support for things you can’t use in the cloud, like USB, as well
as most other devices and hardware emulation, making NEMU smaller and simpler than
QEMU. Both QEMU and NEMU are type two hypervisors.

AWS and Google have created their own type two hypervisors, each with the goal of
dispensing with VMs for isolating containers and cloud functions/lambdas. Like NEMU,
each solution catches accesses to the underlying system, and each limits access using
seccomp() to reduce the number of system calls that can be made to the host from the hyper
visors. You can download the source code to both hypervisors from GitHub if you want to,
as both are open source. But the way each has been designed is quite different.

You can read the Firecracker paper [1], presented at NSDI ’20, for more on motivation and the
deeper details. I found myself fascinated that the paper’s authors talk about running more
than 8,000 instances on a high-end server, so as to maximize the use of total physical memory,
multiple CPUs, and NIC queues.

Firecracker is written in Rust, and like NEMU, provides a limited, virtual system on top
of Linux KVM. Firecracker uses seccomp to limit the number of system calls to 24 and 30
ioctls. Firecracker, like Docker, also relies on some of the same features for isolation, such as
namespaces, cgroups, and dropping of privileges. Firecracker provides support for the container
or lambdas being run by including a stripped-down Linux kernel. Instead of taking seconds to

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  3

EDITORIAL
Musings

boot, all this support structure can be running in less than 200
milliseconds. And Firecracker uses more than an order of magni-
tude less memory and storage than a VM-based approach.

Google programmers used Go, another language that provides
strong typing and dynamically allocated and reclaimed memory,
like Rust. The Google system, named gVisor, consists of two
processes. The first, a hypervisor called Sentry, emulates a Linux
system call interface sufficient to run most cloud functions or
containers. Like Firecracker, Sentry needs to make system calls
to the host, and uses a less severely restricted set at 68. Sentry
has its own netstack to implement TCP/IP, unlike Firecracker,
which uses its guest Linux kernel for the network stack. While
Firecracker does away with access to the host file system,
instead creating an image file like a VM, gVisor uses a helper
application, called Gofer, to handle file system access.

The Firecracker paper doesn’t include performance comparisons
to gVisor, but a paper by Anjali et al. [2] examines both perfor-
mance and a measure of security of LXC (native Linux contain-
ers), gVisor, and Firecracker. Anjali et al. use microbenchmarks
to compare these three container solutions, along with Linux
without containers. They report that the Firecracker has high
network latency, while gVisor is slower at memory manage-
ment and network streaming. gVisor is also much slower when
it comes to opening and writing files. For security, the paper
authors look at code coverage in the Linux kernel including
KVM, with the assumption that an isolation solution that relies
on more lines of kernel code, running at the highest privilege
level, is less likely to be secure due to the potential for kernel
bugs. Firecracker does rely less on the underlying Linux kernel,
but not by much, using 9.59% of the kernel’s 806,318 lines of code
versus 11.31% for gVisor.

There are other approaches for isolating containers and cloud
functions. Library OSes, also called unikernels, rely on build-
ing an application that includes the needed operating system
support, and can run on bare metal or on top of a hypervisor like
KVM. I ran across Nabla while reading [2] and discovered that
Nabla is based upon MirageOS, a unikernel system written in
OCaml. Using Nabla requires that the library OS be linked with
the application, something I considered a roadblock back when
I learned of unikernels [3, 4]. But Nabla was supposed to have a
simple, three-step build process, and I tried the example for run-
ning “Hello, World!” The build failed at the second step, unable
to find seccomp.h, even though there were copies of seccomp.h
handy on my system, including one downloaded for the build.

AWS and Google know that many organizations prefer to build
their apps using JavaScript and Python, and though that’s possible
using unikernel approaches, Firecracker and gVisor are designed
to just work, as if you were running within a VM running Linux.

The Lineup
We start out this issue with an article based on the FAST ’20
paper on Optane performance. Intel Optane, previously known
as 3D Xpoint, can be used as main memory or in SSDs, and in
the article, Yang et al. use microbenchmarks to tease out the
performance characteristics of a system endowed with Optane
DIMMs alongside ordinary DRAM, with the hardware support
for making data flushed from CPU caches persistent even if
power is interrupted.

Zahn et al. wrote “How to Not Copy Files” for FAST ’20, and
besides being curious about the paper title, I wondered just what
was special about their approach—and what was wrong with
how other file systems handle file copying. File copying is more
important than ever in current systems, with copy-on-write
(CoW) being used to speed up file cloning often used with con-
tainers. Zahn et al. demonstrate how BetrFS is better and faster
at file cloning than any of the current Linux file system favorites
while describing their modified B-epsilon trees.

I took advantage of my temporary access to Dick Sites, who wrote
about his KUtrace tool in the Summer 2020 issue [5], to ask him
some more questions. Honestly, there were a lot more I would
have liked to have covered, as Sites has had an insider’s view of
developments in compilers and CPU architecture since 1966,
but at least we dealt with several areas and provided pointers to
where you can learn more.

Zhu et al. had an interesting paper about superpages in the Linux
kernel. I had heard that superpage support should be disabled,
and wondered just what the problem was with something that
should increase the performance of memory-hungry applica-
tions. It turns out that the answer is complicated, but Zhu and
his co-authors do a very good job of explaining the issues while
presenting their own solution to improving superpage problems
on Linux.

I had wanted to get a couple of the authors of Firecracker and
gVisor to write for this issue, but that didn’t work out. I did run
across a fascinating technical report about cloud program-
ming, and interviewed one of the authors, Ion Stoica, about
issues raised in that report. While the cloud does abstract the
details of operations, programming in the cloud mostly means
microservices today, something very different than what most
programmers have been taught how to do.

Georg Link offered to write about open source health: for exam-
ple, how can you tell if an open source project is healthy enough
to be around in five years? The answer to that isn’t easy to figure
out, but Link provides good suggestions about what he and the
Linux Foundation’s CHAOSS Project look for when determining
health.

4    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

EDITORIAL
Musings

Uta et al. add to the understanding of how large clusters work by
contributing time-series data of a datacenter in the Netherlands.
They call this data MRI-like because it does allow analysis in
multiple dimensions. Their contribution, and that of their organi-
zation, differs from other contributed traces of large clusters
because of the types of applications being run in their DC.

Gómez-Iglesias et al. explain how Intel CPU bugs with names
like Meltdown and Spectre are actually likely to affect systems.
The authors explain what it takes to carry off a successful attack,
the various ways that systems can be patched, and the trade-
offs associated with the different mitigations, mainly loss of
performance.

Anatoly Mikhaylov shares his experience in using tagging and
OpenTrace to connect requests coming in to a service with data-
base performance issues. Associating a particular request with
an unusually slow SQL query isn’t easy, because of the interme-
diate layers found in today’s software architecture. Mikhaylov,
who works at Zendesk, explains how he and coworkers have
worked out how to do this cleanly.

Laura Nolan, reacting to Black Lives Matter, writes about how
SREs and other technologists can contribute to changing how
people of color are treated. Nolan suggests actions that include
changing technical language, being aware, and making changes
that are within your sphere of action.

Cory Lueninghoener presents the first installment in his column
named “Systems Notebook.” Lueninghoener describes how he
and a group of coworkers avoided failure in the design of a new
system management stack. Instead of plugging away in isola-
tion and later presenting their new system, his group decided
to involve others at his site to avoid problems down the road
with missing features and lack of acceptance because they had
excluded interested parties.

Dave Josephsen continues with his examination of eBPF.
Josephsen begins with mythical lovers, forced to communicate
through a crack in a wall. He compares this to communications
between BPF within the kernel and its Python stub in userspace,
and describes three ways that this communication can occur.

Terence Kelly, in his new column, “Programming Workbench,”
focuses on a locking technique that often gets mentioned but has
been poorly documented. Kelly explains hand-over-hand locking,
an easy-to-understand method for protecting data structures,
such as linked lists, on systems with multiple threads. Kelly
plans to continue on this theme, providing code examples in C for
interesting algorithms that deserve more exploration.

Simson Garfinkel launches his own column, “SIGINFO,” with
some history involving his current place of work. Garfinkel
begins with the story of how we wound up with 80-column ter-
minals, covers UNIX’s “everything is a file” concept, and winds

up tying Multics segments to NVRAM. Garfinkel has a long his-
tory of writing, and he loves to get his research right as well.

Dan Geer, working solo this time, considers questions we should
be asking about security in the time of the coronavirus. Geer,
whose column focuses on metrics and measuring security, takes
a deep look at how the pandemic has changed not just the way we
work, but also the threats our computer systems and networks
now face.

Robert Ferrell contrasts working from home with working
remotely. He’s done both and suggests that one is definitely more
comfortable and sensible than the other.

Mark Lamourine has reviewed three books this time, one about
algorithms, another concerning skepticism, and the third about
re-engineering legacy software. I review a book of stories about
interesting things, often failures, that happened to IT architects
and the resulting build outs.

I once asked a professor why there weren’t any papers about new
operating systems at the SOSP we were attending. His answer
was succinct: operating systems are hard. I think it is also hard to
create ways to protect those operating systems from the software
running above them, doing so in ways that are performant but
also should remain secure. When I learned about Firecracker late
in 2019, I started studying the current methods, from unikernels
to system calls reimplemented in Go. Just as VMs and containers
have their place in the clouds of today, so do cloud functions and
lambdas, and for these to work efficiently they need to be secured
with lightweight technology.

I don’t think we have heard the last of developments in this area.

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  5

EDITORIAL
Musings

References
[1] A. Agache, M. Brooker, A. Florescu, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, and D. M. Popa, “Firecracker: Light-
weight Virtualization for Serverless Applications,” in Proceed-
ings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ‘20): https://www.usenix.org​
/conference/nsdi20/presentation/agache.

[2] Anjali, T. Caraza-Harter, and M. M. Swift, “Blending
Containers and Virtual Machines: A Study of Firecracker and
gVisor,” in Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments
(VEE ’20): https://dl.acm.org/doi/pdf/10.1145/3381052.338​1315.

[3] A. Kantee and J. Cormack, “Rump Kernels: No OS? No
Problem!” ;login:, vol. 39, no. 5 (October 2014): https://www​
.usenix​.org​/publications/login/october-2014-vol-39-no-5​
/rump-ker​nels-no-os-no-problem.

[4] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt, “Rethinking the Library OS from the Top Down,” in
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’11): https://dl.acm.org/doi/abs/10.1145/1950365​
.1950399.

[5] R. L. Sites, “Anomalies in Linux Processor Use,” ;login:, vol.
45, no. 2 (Summer 2020): https://www.usenix.org/publications​
/login/summer2020/sites.

Notice of Annual Meeting
The USENIX Association’s Annual Meeting

with the membership and the Board of Directors
will take place online on

Friday, September 25, at 9:00 am PDT.
www.usenix.org/annual-meeting-2020-registration

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://dl.acm.org/doi/pdf/10.1145/3381052.3381315
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/rump-kernels-no-os-no-problem
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/rump-kernels-no-os-no-problem
https://www.usenix.org/publications/login/october-2014-vol-39-no-5/rump-kernels-no-os-no-problem
https://dl.acm.org/doi/abs/10.1145/1950365.1950399
https://dl.acm.org/doi/abs/10.1145/1950365.1950399
https://www.usenix.org/publications/login/summer2020/sites
https://www.usenix.org/publications/login/summer2020/sites

