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R esearchers have been anticipating the arrival of commercially avail-
able, scalable non-volatile main memory technologies that provide 
“byte-addressable” storage that survives power outages. With the 

arrival of Intel’s Optane DC Persistent Memory Module, we can start to 
understand the real capabilities and characteristics of these memories and 
start designing systems to fully leverage them. We experimented with an 
Intel system complete with Optane and have learned how to get the most 
performance out of this new technology. Our testing has helped us under-
stand the hidden complexities of Intel’s new devices.

Optane Memory Architecture
Intel’s Optane DC Persistent Memory Module (which we refer to as the Optane DIMM) is the 
first scalable, commercially available non-volatile DIMM (NVDIMM). Compared to existing 
storage devices, including Optane SSDs that connect to an external interface such as PCIe, 
the Optane DIMM has lower latency, higher read bandwidth, and presents a memory address-
based interface. Compared to DRAM, it has higher density and persistence. 

Like traditional DRAM DIMMs, the Optane DIMM sits on the memory bus, and connects to 
the processor’s integrated memory controller (iMC) (Figure 1a). Intel’s Cascade Lake proces-
sors are the first CPUs to support the Optane DIMM. Each processor die has two iMCs, and 
each iMC supports three channels. Therefore, in total, a processor die can support six Optane 
DIMMs across its two iMCs.

To ensure persistence, the iMC sits within the asynchronous DRAM refresh (ADR) domain—
Intel’s ADR feature ensures that CPU stores that reach the ADR domain will survive a power 
failure (i.e., will be flushed to the NVDIMM within the hold-up time) [4]. The iMC maintains 
read and write pending queues (RPQs and WPQs) for each of the Optane DIMMs (Figure 1b), 
and the ADR domain includes WPQs. Once data reaches the WPQs, the ADR ensures that it 
will survive power loss. The ADR domain does not include the processor caches, so stores are 
only persistent once they reach the WPQs. Stores are pulled from the WPQ and sent to the 
Optane DIMM in cache-line (64-byte) granularity.

Memory accesses to the NVDIMM (Figure 1b) arrive first at the on-DIMM controller (the 
Optane controller), which coordinates access to the Optane media. Similar to SSDs, the 
Optane DIMM performs an internal address translation and maintains an address indirec-
tion table (AIT) for this translation [1].

After address translation, the actual access to storage media occurs. As the Optane physi-
cal media access granularity is 256 bytes (an Optane block), the Optane controller translates 
smaller requests into larger 256-byte accesses, causing write amplification where small 
stores become read-modify-write operations. The Optane controller has a small buffer (the 
Optane buffer) to merge adjacent writes.
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Operation Modes
Optane DIMMs can operate in two modes (Figure 1a): Memory 
and App Direct.

Memory mode uses Optane to expand main memory capacity 
without persistence. It combines an Optane DIMM with a con-
ventional DRAM DIMM that serves as a cache for the NVDIMM. 
The CPU and operating system simply see the Optane DIMM as a 
larger (volatile) portion of main memory.

App Direct mode provides persistence and does not use a DRAM 
cache. The Optane DIMM appears as a separate, persistent 
memory device.

In both modes, Optane memory can be (optionally) interleaved 
across channels and DIMMs (Figure 1c). On our platform, the 
only supported interleaving size is 4 KB. With six DIMMs, an 
access larger than 24 KB will access all DIMMs.

Instruction Support
In App Direct mode, applications and file systems can access the 
Optane DIMMs with load and store instructions. Applications 
modify the Optane DIMM’s content using store instructions, and 
those stores will eventually become persistent. The cache hier-
archy, however, can reorder stores, making recovery challeng-
ing [3]. The current Intel ISA provides clflush and clflushopt 
instructions to f lush cache lines back to memory, and clwb  
can write back (but not evict) cache lines. Alternatively, non-
temporal stores (ntstore) bypass the caches and write directly 
to memory. All these instructions are non-blocking, so a program 
must issue an sfence to ensure that a previous flush, write back, 
or non-temporal store is complete and persistent.

Performance Characterization
We find that Optane’s performance characteristics are surpris-
ing in many ways, and more complex than the common assump-
tion that Optane behaves like slightly slower DRAM.

LATTester
Characterizing Optane memory is challenging for two reasons. 
First, the underlying technology has major differences from 
DRAM but publicly available documentation is scarce. Secondly, 
existing tools measure memory performance primarily as a func-
tion of locality and access size, but we have found that Optane 
performance also depends strongly on memory interleaving and 
concurrency. 

Consequently, we built a microbenchmark toolkit, LATTester. 
To accurately measure the CPU cycle count and minimize the 
impact from the virtual memory system, LATTester runs as a 
dummy file system in the kernel and accesses pre-populated  
(i.e., no page-faults) kernel virtual addresses. LATTester also 
pins the kernel threads to fixed CPU cores and disables IRQ and 
cache prefetcher. In addition to latency and bandwidth measure-
ments, LATTester collects a large set of hardware counters from 
the CPU and NVDIMM.

Our investigation of Optane memory behavior proceeded in two 
phases. First, we performed a broad, systematic “sweep” over 
Optane configuration parameters, including access patterns 
(random vs. sequential), operations (loads, stores, fences, etc.), 
access size, stride size, power budget, NUMA configuration, and 
interleaving. Using this data, we designed targeted experiments 
to investigate anomalies. Across all our tests, we collected over 
ten thousand data points. The program and data set are available 
at https://github.com/NVSL/OptaneStudy, while the analysis 
was published as conference proceedings [5] and a longer techni-
cal report [2].

System Description
We performed our experiments on a dual-socket evaluation 
platform provided by Intel Corporation. The CPUs are 24-core 
Cascade Lake engineering samples with a similar spec as the 
previous-generation Xeon Platinum 8160. Each CPU has two 
iMCs and six memory channels (three channels per iMC). A 
32-GB Micron DDR4 DIMM and a 256-GB Intel Optane DIMM 

Figure 1: Overview of (a) Optane platform, (b) Optane DIMM, and (c) how Optane memories interleave. Optane DIMMs can either be a volatile far 
memory with a DRAM cache (Memory mode) or persistent memory (App Direct mode).
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are attached to each of the memory channels. Thus the system 
has 384 GB (2 socket × 6 channel × 32 GB/DIMM) of DRAM, and 
3 TB (2 socket × 6 channel × 256 GB/DIMM) of Optane memory. 
Our machine runs Fedora 27 with kernel version 4.13.0 built 
from source.

Experimental Configurations
As the Optane DIMM is both persistent and byte-addressable, 
it can fill the role of either a main memory device (i.e., replacing 
DRAM) or a persistent device (i.e., replacing disk). In our paper, 
we focus on the persistent usage.

Our baseline (referred to as Optane) exposes six Optane DIMMs 
from the same socket as a single interleaved namespace (leav-
ing the other CPU socket idle). In our experiments, we used local 
accesses (i.e., from the same NUMA node) as the baseline to 
compare with other configurations, such as access to Optane 
memory on the remote socket (Optane-Remote) or DRAM on the 
local or remote socket (DRAM and DRAM-Remote). To better 
understand the raw performance of Optane memory without 
interleaving, we also create a namespace consisting of a single 
Optane DIMM and denote it as Optane-NI.

Typical Latency 
Read and write latencies are key memory technology parameters. 
We measured read latency by timing the average latency for indi-
vidual 8-byte load instructions to sequential and random memory 
addresses. To eliminate caching and queueing effects, we empty 
the CPU pipeline and issue a memory fence (mfence) between 
measurements (mfence serves the purpose of serialization for 
reading timestamps). For writes, we load the cache line into the 
cache and then measure the latency of one of two instruction 
sequences: a 64-bit store, a clwb, and an mfence;  or an ntstore 
and an mfence.

Our results (Figure 2) show the read latency as seen by software 
for Optane is 2×–3× higher than DRAM. We believe most of this 
difference is due to Optane’s longer media latency. Optane mem-
ory is also more pattern-dependent than DRAM. The random-
vs-sequential gap is 20% for DRAM but 80% for Optane memory, 
and this gap is a consequence of the Optane buffer. For stores, the 
instructions commit once the data reaches the ADR at the iMC, 
so both DRAM and Optane show a similar latency.

Bandwidth 
Detailed bandwidth measurements are useful to application 
designers as they provide insight into how a memory technol-
ogy will impact overall system throughput. Figure 3 shows the 
bandwidth achieved at different thread counts for sequential 
accesses with 256-byte access granularity. We show loads and 

stores (Write(ntstore)), as well as cached writes with flushes 
(Write(clwb)). All experiments use AVX-512 instructions. The 
left-most graph plots performance for interleaved DRAM, 
while the center and right-most graphs plot performance for 
interleaved and non-interleaved Optane. In the non-interleaved 
measurements all accesses hit a single DIMM.

Figure 4 shows how performance varies with access size. The 
graphs plot aggregate bandwidth for random accesses of a given 
size. We use the best-performing thread count for each curve 
(given as “<load thread count> / <ntstore thread count> / <store 
+ clwb thread count>” in the figure). The data shows that DRAM 
bandwidth is both higher than Optane and scales predictably 
(and monotonically) with thread count until it saturates the 
DRAM’s bandwidth, which is mostly independent of access size.

The results for Optane are wildly different. First, for a single 
DIMM, the maximal read bandwidth is 2.9× the maximal write 
bandwidth (6.6 GB/s and 2.3 GB/s, respectively), where DRAM 
has a smaller gap (1.3×) between read and write bandwidth. 
Second, with the exception of interleaved reads, Optane perfor-
mance is non-monotonic with increasing thread count. For the 
non-interleaved (i.e., single-DIMM) cases, performance peaks 
at between one and four threads and then tails off. Interleaving 
pushes the peak to 12 threads for store + clwb. Third, Optane 
bandwidth for random accesses under 256 bytes is poor.

Interleaving (which spreads accesses across all six local DIMMs) 
adds further complexity: Figure 3 (center) and Figure 4 (center) 
measure bandwidth across six interleaved NVDIMMs. Inter-
leaving improves peak read and write bandwidth by 5.8× and 
5.6×, respectively. These speedups match the number of DIMMs 
in the system and highlight the per-DIMM bandwidth limita-
tions of Optane. The most striking feature of the graph is a dip in 
performance at 4 KB—this dip is an emergent effect caused by 
contention at the iMC, and it is maximized when threads perform 
random accesses close to the interleaving size. We return to this 
phenomenon later.

Figure 2: Typical latency. Random and sequential read latency, as well as 
write latency with clwb and ntstore instructions. Error bars show one 
standard deviation.

http://www.usenix.org
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Best Practices for Optane DIMMs 
There are many differences between Optane and conventional 
storage and memory. These differences mean that existing intu-
itions about optimizing software do not apply directly to Optane. 
We distill our experiments into a set of four principles for build-
ing Optane-based systems.

1.	 Avoid random accesses smaller than 256 bytes.

2.	 Use non-temporal stores when possible for large transfers,  
and control cache evictions.

3.	 Limit the number of concurrent threads accessing an Optane 
DIMM.

4.	 Avoid NUMA accesses (especially read-modify-write 
 sequences).

Avoid Small Random Accesses 
Internally, Optane DIMMs update Optane contents at a 256-byte 
granularity. This granularity means that smaller updates are 
inefficient since they incur write amplification. The less locality 
the accesses exhibit, the more severe the performance impact.

To characterize the impact of small stores, we performed two 
experiments. First, we quantify the inefficiency of small stores 
using a metric we have found useful in our study of Optane 
DIMMs. The Effective Write Ratio (EWR) is the ratio of bytes 
issued by the iMC divided by the number of bytes actually writ-
ten to the Optane media (as measured by the DIMM’s hardware 

counters). EWR is the inverse of write amplification. EWR 
values below one indicate the Optane DIMM is operating ineffi-
ciently since it is writing more data internally than the applica-
tion requested. Figure 5 plots the strong correlation between 
EWR and device bandwidth for a single DIMM for all measure-
ments in our sweep of Optane performance. Maximizing EWR  
is a good way to maximize bandwidth.

Notably, 256-byte updates are EWR efficient, even though the 
iMC breaks them into 64 byte (cache-line sized) accesses to the 
DIMM—the Optane buffer is responsible for buffering and com-
bining 64-byte accesses into 256-byte internal writes. As a con-
sequence, Optane DIMMs can efficiently handle small stores, if 
they exhibit sufficient locality. To understand how much locality 
is sufficient, we crafted an experiment to measure the size of the 
Optane buffer. First, we allocate a contiguous region of N Optane 
blocks. During each “round” of the experiment, we first update 
the first half (128 bytes) of each Optane block. Then we update 
the second half of each Optane block. We measured the EWR for 
each round. Figure 6 shows the results. Below N = 64 (a region 
size of 16 KB), the EWR is near unity, suggesting the accesses to 
the second halves are hitting in the Optane buffer. Above 16 KB, 
write amplification jumps, indicating a sharp rise in the miss 
rate, implying the Optane buffer is approximately 16 KB in size. 
Together these results provide specific guidance for maximizing 
Optane store efficiency: avoid small stores or, alternatively, limit 
the working set to 16 KB per Optane DIMM.

Figure 3: Bandwidth vs. thread count. Maximal bandwidth as thread count increases on local DRAM, non-interleaved, and interleaved Optane memory. All 
threads use a 256-byte access size.

Figure 4: Bandwidth over access size. Maximal bandwidth over different access sizes on local DRAM, interleaved, and non-interleaved Optane memory. 
Graph titles include the number of threads used in each experiment (Read/Write (ntstore) / Write (clwb)).

http://www.usenix.org
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Use Non-Temporal Stores for Large Writes
When writing to persistent memory, programmers have several 
options, each with performance implications. After a regular 
store, programmers can either evict (clflush, clflushopt) or 
write back (clwb) the cache line. Alternatively, an ntstore writes 
directly to memory, bypassing the cache hierarchy. For all these 
instructions, a subsequent sfence ensures their effects are 
persistent.

In Figure 7, we compare bandwidth (left) and latency (right) for 
sequential accesses using AVX-512 stores with three different 
instruction sequences: ntstore, store + clwb, and store all 
followed by a sfence. Our bandwidth test used six threads since 
it gives good results for all instructions. The data show that 
flushing after each 64-byte store improves the bandwidth for 
accesses larger than 64 bytes. Letting the cache naturally evict 
cache lines adds nondeterminism to the stream that reaches the 
Optane DIMM, whereas proactively cleaning the cache ensures 
that accesses remain sequential. The EWR correlates: adding 
flushes increases EWR from 0.26 to 0.98.

The data also shows that non-temporal stores have lower latency 
for accesses over 512 bytes, and the highest bandwidth for 
accesses over 256 bytes. Here, the performance is due to the fact 
that a store must load the cache line into the CPU’s local cache 
before execution, thereby using up some of the Optane DIMMs 
bandwidth. As ntstores bypass the cache, they avoid this extra-
neous read.

Limit the Number of Concurrent Threads Accessing  
an Optane DIMM 
Systems should minimize the number of threads targeting a 
single DIMM simultaneously. We have identified two distinct 
mechanisms that contribute to this effect.

Contention in the Optane Buffer
Contention among threads for space in the Optane buffer will 
lead to increased evictions, driving down EWR. For example, 
using eight threads issuing sequential non-temporal stores 

achieves an EWR of 0.62 and 69% bandwidth compared to a 
single thread, which has an EWR of 0.98. Figure 3 (right) shows 
this contention effect in action.

Contention in the iMC
The limited queue capacity in the iMC also hurts performance 
when multiple cores target a single DIMM. On our platform, 
the WPQ buffer queues up to 256-byte data issued from a single 
thread. Since Optane DIMMs are slow, they drain the WPQ 
slowly, which leads to head-of-line blocking effects. 

Figure 4 (center) shows an example of this phenomenon: Optane 
bandwidth falls drastically when doing random 4 KB accesses 
across interleaved Optane DIMMs. Due to the random access 
pattern, periodically all threads will end up colliding on a single 
DIMM, starving some threads. Thread starvation occurs more 
often as the access size grows, reaching maximum degradation 
at the interleaving size (4 KB). For accesses larger than the inter-
leaving size, each core starts spreading their accesses across 
multiple DIMMs, evening out the load. The write data also show 
small peaks at 24 KB and 48 KB where accesses are perfectly 
distributed across the six DIMMs. This degradation effect will 
occur whenever 4 KB accesses are distributed nonuniformly 
across the DIMMs.

Avoid Mixed or Multithreaded Accesses to Remote 
NUMA Nodes
NUMA effects for Optane are much larger than for DRAM, so 
designers should avoid cross-socket traffic. The cost is especially 
steep for accesses that mix loads and stores or include multiple 
threads. Between local and remote Optane memory, the read 
latency difference is 1.79× (sequential) and 1.20× (random). For 
writes, remote Optane’s latency is 2.53× (ntstore) and 1.68× 
higher compared to local. For bandwidth, remote Optane can 
achieve 59.2% and 61.7% of local read and write bandwidth at 
optimal thread count (16 for local read, 10 for remote read, and 4 
for local and remote write).

Figure 6: Optane buffer capacity. The Optane DIMM can use the Optane 
buffer to coalesce writes spread across 16 KB.

Figure 5: Relationship between EWR and throughput on a single DIMM. 
Each dot represents an experiment with different access size, thread count, 
and power budget configurations. Note the correlation between the metrics.

http://www.usenix.org
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The performance degradation ratio above is similar to remote 
DRAM to local DRAM. However, the bandwidth of Optane 
memory is drastically degraded when either the thread count 
increases or the workload is read/write mixed. Based on the 
results from our systematic sweep, the bandwidth gap between 
local and remote Optane memory for the same workload can be 
over 30×, while the gap between local and remote DRAM is, at 
max, only 3.3×.

Conclusion
Our guidelines provide a starting point for building and tuning 
Optane-based systems. By necessity, they reflect the idiosyn-
crasies of a particular implementation of a particular persistent 
memory technology, and it is natural to question how applicable 
the guidelines will be both to other memory technologies and to 
future versions of Intel’s Optane memory. Ultimately, it is unclear 
how persistent memory will evolve. Several of our guidelines 
are the direct product of architectural characteristics of the 
current Optane incarnation. The size of the Optane buffer and 
iMC’s WPQ might change in future implementations, which 
would limit the importance of minimizing concurrent threads 
and reduce the importance of the write granularity. However, 
expanding these structures would increase the energy reserves 
required to drain the ADR during a power failure. 

The broadest contribution of our analysis and guidelines is that 
they provide a road map to potential performance problems 
that might arise in future persistent memories and the systems 
that use them. Our analysis shows how and why issues like inter
leaving, buffering, instruction choice, concurrency, and cross-
core interference can affect performance. If future technologies 
are not subject to precisely the same performance pathologies as 
Optane, they may be subject to similar ones.
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