
20    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SYSTEMS

Understanding Transparent Superpage
Management
W E I X I Z H U , A L A N L . C O X , A N D S C O T T R I X N E R

Superpages (2 MB pages) can reduce the address translation overhead
for large-memory workloads in modern computer systems. We clearly
outline the sequence of events in the life of a superpage and explore

the design space of when and how to trigger and respond to those events. We
provide a framework that enables better understanding of superpage manage-
ment and the trade-offs involved in different design decisions. Quicksilver,
our novel superpage management system, is designed based on the insights
obtained by using this framework to improve superpage management.

The memory capacity of modern machines continues to expand at a rapid pace. There is
also a growing class of “large memory” data-oriented applications—including in-memory
databases, data analysis tools, and scientific computation—that can productively utilize all
available memory resources. These large memory applications can process data at scales of
terabytes or even petabytes, which cannot fit in the memory. Therefore, they either use out-
of-core computation frameworks or build their own heuristics to efficiently cache disk data to
avoid the unexpected performance impacts of swapping. As a result, these applications have
very large memory footprints, which makes address translation performance critical.

The use of superpages, or “huge pages,” can reduce the cost of virtual-to-physical address
translation. For example, the x86-64 architecture supports 2 MB superpages. Using these
2 MB mappings eliminates one level of the page walk traversal and enables more efficient use of
TLB (translation lookaside buffer) entries. Intel’s most recent processors can hold 1536 map-
pings in the TLB. The 2 MB superpages can therefore increase TLB coverage from around
6 MB (0.009% of the memory in a system with 64 GB of DRAM) to 3 GB (4.7%). While this is
still a small fraction of the total physical memory capacity of a large machine, it is far more
likely to capture an application’s short-term working set.

The challenge, however, is for the operating system (OS) to transparently manage memory
resources in order to maximize superpage use. Modern systems do not necessarily accom-
plish this well, which has led to many suggestions that transparent huge page (THP) support
be turned off in Linux for performance-critical applications. A better solution, however, is to
understand the benefits and limitations of existing superpage management policies in order
to redesign and improve them.

We carefully explain and analyze the life cycle of a superpage and present several novel
observations about the mechanisms used for superpage management. These observations
motivate Quicksilver (https://github.com/rice-systems/quicksilver) [9], an innovative design
for transparent superpage management based upon FreeBSD’s reservation-based physical
superpage allocator. The proposed design achieves the benefits of aggressive superpage
allocation but mitigates the memory bloat and fragmentation issues that arise from under-
utilized superpages. The system is able to match or beat the performance of existing systems
in both lightly and heavily fragmented scenarios. For example, when using synchronous page
preparation, the system achieves 2× speedups over Linux on PageRank using GraphChi on a
heavily fragmented system. On Redis, the system is able to maintain Redis throughput and

Weixi Zhu is currently a fifth-
year CS PhD student at Rice
University who is advised by
Professor Scott Rixner and
works closely with Professor

Alan Cox. His research area is memory systems
aimed at improving their flexibility and perfor-
mance for both generic and domain-specific
architectures. He received his BS in the National
Elite Program (computer science) at Nanjing
University in 2016 and defended his MS thesis
at the Computer Science Department of Rice
University in 2018. wxchu@rice.edu

Alan L. Cox is a professor of
computer science at Rice Univer-
sity and a long-time contributor
to the FreeBSD project. Over the
years, his research has sought to

address fundamental problems at the intersec-
tion of operating systems, computer architec-
ture, and networking. Prior to joining Rice, he
earned his BS at Carnegie Mellon University
and his PhD at the University of Rochester. 
alc@rice.edu

Scott Rixner is a professor of
computer science at Rice Uni-
versity. His research spans vir-
tualization, operating systems,
and computer architecture, with

a specific focus on memory systems and net-
working. His work has led to 11 patents and has
been implemented within several open source
systems. He is also well versed in the internals
of the Python programming language, as he has
developed Python interpreters for both embed-
ded systems and web browsers. Prior to joining
Rice, he received his PhD from MIT. 
rixner@rice.edu

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  21

SYSTEMS
Understanding Transparent Superpage Management

tail latency as fragmentation increases, whereas the throughput
of other systems degrades and tail latency increases. Finally,
the system is able to achieve these performance improvements
without excessive memory bloat.

Transparent Superpage Management
Kernels manage superpages transparently via these five events:

1.	 Physical superpage allocation: acquisition of a free physical
superpage

2.	 Physical superpage preparation: incremental or full preparation
of the initial data for an allocated physical superpage

3.	 Superpage mapping creation: creation of a virtual superpage
in a process’s address space and mapping it to a fully prepared
physical superpage

4.	 Superpage mapping destruction: destruction of a virtual super-
page mapping

5.	 Physical superpage deallocation: partial or full deallocation of
an allocated physical superpage

The five events follow an order that indicates their prerequisites.
However, the triggers and handlers for each of these events are
determined by the OS and vary across OSes. Figure 1 illustrates
the lifetime of a superpage in terms of these five events.

As shown in the figure, the first step in the process is physical
superpage allocation. The OS can choose to allocate a physical
superpage to back any 2 MB-aligned virtual memory region. A
physical superpage could be allocated synchronously upon a page
fault or asynchronously via a background task. In order to allo-
cate a physical superpage, the physical memory allocator must
have an available, aligned 2 MB region. Under severe memory
fragmentation, such regions may not be available.

The second step is to prepare the physical superpage with its
initial data. A physical superpage can be prepared in one of three
ways. First, if the virtual memory region is anonymous, that is,
not backed by a file, then the superpage simply needs to be zeroed.
Second, if the virtual memory region is a memory-mapped file,
then the data must be read from the file. Finally, if the virtual

memory region is currently mapped to independent 4 KB pages,
then the contents of those existing pages must be copied into the
physical superpage. In this case, the 4 KB pages within the super-
page that were not already mapped would need to be prepared
appropriately, either via zeroing or reading from the backing file.

Physical superpages can be prepared all at once or incrementally.
As each 4 KB page is prepared, it can also be temporarily mapped
as a 4 KB page. At a minimum, on a page fault, the 4 KB page that
triggered the fault must be prepared immediately in order to
allow the application to resume. However, upon a page fault, the
OS can choose to prepare the entire physical superpage, only pre-
pare the relevant 4 KB page, or prepare the relevant 4 KB page,
allow the application to resume, and prepare the remaining pages
later (either asynchronously or when they are accessed).

Once a physical superpage has been fully prepared, the third
step is to map that superpage into a process’s virtual address
space in order to achieve address translation benefits. Before the
superpage is mapped, the physical memory can still be accessed
via 4 KB mappings; afterwards, the OS loses the ability to track
accesses and modifications at a 4 KB granularity. Therefore, an
OS may delay the creation of a superpage mapping if only some of
the constituent pages are dirty in order to avoid unnecessary I/O
in the future.

Superpage mappings are often created upon a page fault, on
either the initial fault to the memory region or a subsequent fault
after the entire superpage has been prepared. However, if the
physical superpage preparation is asynchronous, then its super
page mapping can also be created asynchronously. Note that on
some architectures—for example, ARM—any 4 KB mappings
that were previously created must first be destroyed.

Fourth, superpage mappings can be destroyed at any time, but
must be destroyed whenever any part of the virtual superpage is
freed or has its protection changed. After the superpage map-
ping is destroyed, 4 KB mappings must be recreated for any
constituent pages that have not been freed.

Figure 1: The five events in the life of a superpage (SP)

22    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SYSTEMS
Understanding Transparent Superpage Management

Finally, a physical superpage is deallocated when an application
frees some or all of the virtual superpage, when an application
terminates, or when the OS needs to reclaim memory. If a super-
page mapping exists, it must be destroyed before the physical
superpage can be deallocated. Then, either the entire 2 MB
can be returned to the physical memory allocator or the physi-
cal superpage can be “broken” into 4 KB pages. If the physical
superpage is broken into its constituent 4 KB pages, the OS can
return a subset of those pages to the physical memory alloca-
tor. However, returning only a subset of the constituent pages
increases memory fragmentation, decreasing the likelihood of
future physical superpage allocations.

Superpage Management Designs
Table 1 presents a comparison of superpage management designs,
showing how they handle the five events that occur in the life-
time of a superpage. The table shows two existing operating sys-
tems—Linux and FreeBSD—and three state-of-the-art research
prototypes—Ingens, HawkEye, and Quicksilver.

Note that the primary differences among these systems are in
how they allocate and prepare superpages. There are three key
mechanisms that are used to allocate superpages: first-touch,
reservations, and asynchronous daemons. The first-touch policy,
used exclusively by Linux, allocates, prepares, and maps super
pages on the first page fault to a 2 MB-aligned virtual memory
region. Linux goes so far as to compact memory if a physical
superpage is not currently available in order to attempt to obtain
one. This maximizes address translation benefits, as memory is
defragmented upon allocation and the superpage mapping is cre-
ated immediately. However, this also increases page fault latency.
In contrast, the reservation-based policy used by FreeBSD and
Quicksilver simply reserves a physical superpage on the first
page fault to a 2 MB-aligned virtual memory region. A physical
superpage is allocated for that region, but it is not immediately
prepared and mapped. This leads to faster page fault handling,
but does not immediately achieve address translation benefits.
However, there are benefits to delaying preparation and mapping.
If not all of the constituent pages are accessed, then they can be

Linux [3] FreeBSD [6] Ingens [4] HawkEye [7] Quicksilver [9]

Allocation On first page fault
(defragmenting
if necessary) and
asynchronously for
regions with one 4
KB mapping

Created (“reserved”)
on the first page
fault

Asynchronously for
regions with 460
4 KB mappings,
prioritizing
processes with fewer
superpages

Asynchronously
for regions with
one 4 KB mapping,
prioritizing heavily
utilized regions and
processes with big
memory usage and
high TLB overheads

Created (“reserved”)
on the first page
fault

Preparation Immediately
prepares entire
superpage by zeroing
or migration

Incrementally
prepares in-place
4 KB pages on page
faults

Immediately
prepares entire
superpage by zeroing
and migration

Immediately
prepares entire
superpage by zeroing
and migration

Incrementally
prepares until a
threshold is reached
(e.g., 64 in-place
4 KB pages), then
prepares the
remainder entirely

Mapping Immediately after
allocation and full
preparation

Upon the page fault
that finishes all
preparation

Immediately after
allocation and full
preparation

Immediately after
allocation and full
preparation

Upon the page fault
that finishes all
preparation

Unmapping When virtual
memory is freed,
or the mapping is
changed, in whole or
in part

When virtual
memory is freed,
or the mapping is
changed, in whole or
in part

When virtual
memory is freed,
or the mapping is
changed, in whole or
in part

When virtual
memory is freed,
or the mapping is
changed, in whole or
in part

When virtual
memory is freed,
or the mapping is
changed, in whole or
in part

Deallocation As soon as the
superpage is
unmapped

Defers as long as
possible

As soon as the
superpage is
unmapped

As soon as the
superpage is
unmapped

Defers until the
superpage is inactive

Table 1: Comparison of modern superpage management designs

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  23

SYSTEMS
Understanding Transparent Superpage Management

quickly reclaimed under memory pressure, and resources were
not wasted on preparation for ultimately untouched pages.

Quicksilver strikes a balance between incremental and all-at-
once preparation. Reservations are initially prepared incre-
mentally. This minimizes the initial page fault latency, but loses
immediate address translation benefits. Therefore, Quicksilver
has an additional threshold, t. Once t 4 KB pages get prepared, it
prepares the remainder of the superpage all-at-once, either syn-
chronously (Sync-t) or asynchronously (Async-t). This design
choice reduces memory bloat, as will be discussed in Observation
1 in the next section, because it does not immediately prepare and
map the superpage. However, it enables address translation ben-
efits sooner than waiting for the entire superpage to be accessed.

Linux, Ingens, and HawkEye all utilize asynchronous daemons
to allocate, prepare, and map superpages in the background.

Linux’s khugepaged is indiscriminate as it scans memory and
creates superpages for any aligned 2 MB anonymous virtual
memory region that contains at least one dirty 4 KB mapping.
As with Linux’s first-touch policy, if no free physical superpage
exists, it will defragment memory in an attempt to create one.
Ingens’ and HawkEye’s asynchronous daemons both improve
upon Linux’s indiscriminate allocation policy.

To prevent excessive memory bloat, Ingens increases the thresh-
old of 4 KB pages used to trigger creation of a superpage from
one single page to 90%, meaning there must be at least 460 4 KB
mappings in a 2 MB region in order to create a superpage for that
region. Ingens also prioritizes processes with fewer superpages
in order to improve overall fairness. In addition, Ingens actively
compacts non-referenced memory in the background.

HawkEye uses the same threshold as Linux: one dirty page.
Under memory pressure, it scans mapped superpages and makes
their zero-filled 4 KB pages copy-on-write to a canonical zero
page to reclaim free memory. HawkEye also maintains a list of
candidate 2 MB-aligned regions, but further weights them by
the regions’ spatial and temporal utilization and the processes’
memory consumption and TLB overheads. HawkEye then cre-
ates a superpage mapping for the most heavily weighted region in
an attempt to make the most profitable promotions first.

Analysis of Existing Designs
In this section, we analyze the designs for transparent superpage
management described in the previous section and present sev-
eral novel observations about them. Details on the experimental
setup can be found in [9].

Observation 1: Coupling physical allocation, preparation,
and mapping of superpages leads to memory bloat and fewer
superpage mappings. It also is not compatible with trans-
parent use of multiple superpage sizes.

Linux’s first-touch policy couples physical superpage alloca-
tion, preparation, and superpage mapping creation together. As
a result, it enjoys two obvious benefits: it provides immediate
address translation benefits, and it eliminates a large number of
page faults. Therefore, it is usually the best policy when there is
abundant contiguous free memory.

However, this coupled policy has several drawbacks. First, it
can bloat memory and waste time preparing underutilized
superpages. In a microbenchmark that sparsely touches 30 GB
of anonymous memory, Linux’s first-touch policy spends 1.4
sec and consumes 30 GB compared to 0.06 sec and 0.2 GB when
disabling transparent huge pages. While such a case is rare when
applications use malloc to dynamically allocate memory, it may
still happen in a long-running server (for example, Redis). Table 2
shows Redis performance on two workloads: Del-70, which ran-
domly deletes 70% of objects after inserting them, and Range-
XL, which inserts randomly sized objects between 256 bytes
and 1 MB. The table shows that Linux’s first-touch policy bloats
memory by 78% compared to Linux with superpages disabled
(Linux-4 KB) on the workload Range-XL.

Second, it misses chances to create superpage mappings when
virtual memory grows. During a page fault, Linux cannot create
a superpage mapping beyond the heap’s end, so it installs a 4 KB
page, which later prevents creation of a superpage mapping when
the heap grows. Figure 2 shows such behavior for gcc [2], which

Workload Linux-4 KB Linux-
noKhugepaged Linux

Del-70 11.6 GB 11.7 GB 19.8 GB

Range-XL 14.4 GB 25.7 GB 30.7 GB

Table 2: Redis memory consumption. Linux-noKhugepaged disables
khugepaged.

Figure 2: Linux’s first-touch policy fails to create superpages.

24    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SYSTEMS
Understanding Transparent Superpage Management

includes three compilations. Linux’s first-touch policy creates
a few superpage mappings early in each compilation but fails to
create more as the heap grows. Instead, promotion-based policies
can create more superpages, as seen with FreeBSD and Linux’s
khugepaged.

Third, it cannot be extended to larger anonymous or file-backed
superpages. Table 3 estimates the page-fault latency on both 1 GB
anonymous superpages and 2 MB and 1 GB file-backed super
pages. Faulting a 2 MB file-backed superpage on the NVMe disk
costs 1.7 ms and faulting a 1 GB anonymous superpage takes 46
ms. These numbers may cause latency spikes in server applica-
tions. Furthermore, it cannot easily determine which page size
to use on first touch. This is arguably more of an immediate
problem on ARM processors, which support both 64 KB and 2 MB
superpages.

Observation 2: Asynchronous, out-of-place promotion
alleviates latency spikes but delays physical superpage
allocations.

Promotion-based policies can use 4 KB mappings and later
replace them with a superpage mapping. This allows for poten-
tially better-informed decisions about superpage mapping
creation and can easily be extended to support multiple sizes
of superpages. Specifically, there are two kinds of promotion
policies, named out-of-place promotion and in-place promotion.
They differ in whether previously prepared 4 KB pages require
migration when preparing a physical superpage.

Under out-of-place promotion, a physical superpage is not allo-
cated in advance; on a page fault, a 4 KB physical page is allocated
that may neither be contiguous nor aligned with its neighbors.
When the OS decides to create a superpage mapping, it must allo-
cate a physical superpage, migrate mapped 4 KB physical pages,
and zero the remaining ones. At this time, previously created 4
KB mappings are no longer valid.

Linux, Ingens, and HawkEye perform asynchronous, out-of-place
promotion to hide the cost of page migration. As discussed in the
previous section, Linux includes khugepaged as a supplement to
create superpage mappings. The steady, slow increase of Linux’s
superpages in Figure 2 is from khugepaged’s out-of-place promo-
tions. However, khugepaged can easily bloat memory. Table 2
shows a memory bloat from 11.6 GB to 19.8 GB on workload Del-70.
On workload Range-XL, it bloats memory from 25.7 GB to 30.7 GB.

Ingens and HawkEye disable Linux’s first-touch policy and
instead improve the behavior and functionality of khugepaged.
Under memory fragmentation, Linux tries to compact memory
when it fails to allocate superpages, which blocks the ongoing
page fault and leads to latency spikes. Ingens and HawkEye
enhance khugepaged and use it as their primary superpage man-
agement mechanism.

However, out-of-place promotion delays physical superpage allo-
cations and, ultimately, superpage mapping creations, because
the OS must scan page tables to find candidate 2 MB regions
and schedule the background tasks to promote them. Table
4 compares in-place promotion (FreeBSD) with out-of-place
promotion (Ingens and HawkEye) on applications where super
page creation speed is critical. Both PageRank using GraphChi
(GraphChi-PR) [5] and BlockSVM [8] represent important real-
life applications, using fast algorithms to process big data that
cannot fit in memory. To better illustrate the problem, in Table
4 Ingens* and HawkEye* were tuned to be more aggressive, so
that all 2 MB regions containing at least one dirty 4 KB mapping
are candidates for promotion. Specifically, Ingens* uses a 0%
utilization threshold instead of 90%, and HawkEye* uses a 100%
maximum CPU budget to promote superpages. However, Table
4 shows that FreeBSD consistently outperforms both of them.
In other words, the most conservative in-place promotion policy
creates superpage mappings faster than the most aggressive out-
of-place promotion policy.

Observation 3: Reservation-based policies enable specula-
tive physical page allocation, which enables the use of mul-
tiple page sizes, in-place promotion, and obviates the need
for asynchronous, out-of-place promotion.

In-place promotion does not require page migration. It creates
a physical superpage on the first touch, then incrementally
prepares and maps its constituent 4 KB pages without page
allocation. Therefore, the allocation of a physical superpage is
immediate, but its superpage mapping creation is delayed. To
bypass 4 KB page allocations, it requires a bookkeeping system
to track allocated physical superpages: for example, FreeBSD’s
reservation system.

FreeBSD’s reservation system immediately allocates physical
superpages but delays superpage mapping creation, sacrificing
some address translation benefits. Navarro et al. reported neg-
ligible overheads from the reservation system [6]. Table 4 shows
that Linux consistently outperforms FreeBSD when memory is
unfragmented, though Linux and FreeBSD both created similar
numbers of anonymous superpage mappings.

However, FreeBSD aggressively allocates physical super
pages for anonymous memory. Upon a page fault of anonymous
memory, it always speculatively allocates a physical superpage,

Page Size Anonymous NVMe Disk Spinning Disk

2 MB 91 µs 1.7 ms 11 ms

1 GB 46 ms 0.9 sec 7.7 sec

Table 3: Page fault latency. Bold numbers are estimates.

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  25

SYSTEMS
Understanding Transparent Superpage Management

expecting the heap to grow. This eliminates one of the primary
needs for khugepaged in Linux. In Figure 2, FreeBSD has most
of the memory quickly mapped as superpages, because most
speculatively allocated physical superpages end up as fully pre-
pared pages.

Observation 4: Reservations and delaying partial dealloca-
tion of physical superpages fight fragmentation.

Superpages are easily fragmented on a long-running server. A
few 4 KB pages can consume a physical superpage, which ben-
efits little if mapped as a superpage. Existing systems deal with
memory fragmentation in three ways.

Linux compacts memory immediately when it fails to allocate
a superpage. It tries to greedily use superpages but risks block-
ing a page fault. Table 5 evaluated the performance of Redis on a
Cold workload, where an empty instance is populated with 16 GB
of 4 KB objects. Under fragmentation (Frag-50), Linux obtains
slightly higher throughput but much higher tail latency than
Linux-4 KB.

FreeBSD delays the partial deallocation of a physical superpage
to increase the likelihood of reclaiming a free physical super
page. When individual 4 KB pages get freed sooner, they land in
a lower-ordered buddy queue and are more likely to be quickly
reallocated for other purposes. Therefore, performing partial
deallocations only when necessary due to memory pressure
decreases fragmentation.

Ingens actively defragments memory in the background to avoid
blocking page faults. It preferably migrates non-referenced
memory, so that it minimizes the interference with running
applications. As a result, Ingens generates fewer latency spikes
compared with Linux [4]. These migrations, however, do con-
sume processor and memory resources.

Evaluation
This section provides a brief evaluation of several variants
of Quicksilver (Sync-t and Async-t) against Linux, FreeBSD,
Ingens, HawkEye, and their aggressively tuned variants. A
more detailed evaluation can be found in [9].

Unfragmented Performance
Sync-1 uses the same superpage preparation and mapping policy
for anonymous memory as Linux. With no fragmentation, they
perform similarly. However, there are two notable differences.
First, Sync-1 speculatively allocates superpages for growing
heaps, which allows it to outperform Linux on canneal [1] and gcc
[2]. Their similar speedups on reservation-based systems vali-
date Observation 3. Second, Sync-1 creates file-backed super
pages and outperforms Linux on GraphChi-PR.

With no fragmentation, FreeBSD outperforms Ingens and
HawkEye. This validates Observation 2, as the issue is that out-
of-place promotion is slower. Furthermore, on the Redis Cold
workload, Ingens and HawkEye even show a degradation over
Linux without using superpages.

Sync-64 typically outperforms Async-64 because Async-64
zeros pages in the background, which can cause interference.
The comparable performance of Sync-64 and Sync-1 shows that
less aggressive preparation and mapping policies can achieve
comparable results to immediately mapping superpages on
first touch.

Performance under Fragmentation
Linux has a higher tail latency on a Redis Cold workload under
fragmentation than Linux without superpages because its on-
allocation defragmentation significantly increases page fault
latency. In contrast, FreeBSD does not actively defragment
memory, so it generates no latency spikes. Ingens and HawkEye
offload superpage allocation from page faults and compact mem-
ory in the background, so they reduce interference and generate
few latency spikes on the Redis Cold workload. Furthermore,
their speedup over Linux increases as fragmentation increases.

The four variants of Quicksilver all consistently perform well
under fragmentation because their background defragmentation
not only avoids increasing page fault latency, but also succeeds
in recovering unfragmented performance. Specifically, on the
Redis Cold workload with Frag-100, Sync-1 maintained the

Workloads Ingens Ingens* HawkEye HawkEye* FreeBSD

GraphChi-PR 0.58 0.58 0.53 0.60 0.77

BlockSVM 0.81 0.79 0.73 0.81 0.96

Table 4: Speedup over Linux with unfragmented memory. All systems have worse performance than Linux. The Ingens* and HawkEye* versions are aggres-
sively tuned.

Linux-4 KB Linux

Frag-0 1.04 GB/s (5.6 ms) 1.34 GB/s (4.1 ms)

Frag-50 1.04 GB/s (5.7 ms) 0.92 GB/s (10.2 ms)

Table 5: Mean throughput and 95th latency of Redis Cold workload.
Frag-X has X% fragmented memory.

26    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SYSTEMS
Understanding Transparent Superpage Management

highest throughput (1.31 GB/s) while providing low (4.5 ms) tail
latency. This outperforms Linux, the second best system, which
only achieved 1.07 GB/s with 5.6 ms tail latency.

Table 6 shows some select results across the systems discussed in
the paper in a fully fragmented system (DSjeng and XZ are from
SPEC CPU2017 [2]). Note that Quicksilver outperforms the other
systems under high fragmentation across a wide range of work-
loads, but these applications show some of the greatest benefits.

GraphChi-PR is an important real-world workload, and Sync-1
is able to achieve a 2.18× speedup over Linux, far greater than
any of the other systems. To better understand that speedup, con-
sider the other variants of Quicksilver on GraphChi-PR. First,
in a fully fragmented system, Async-256 performs well because
its preemptive and asynchronous superpage deallocation allows
many more superpage allocations than the non-Quicksilver sys-
tems. Quicksilver is able to defragment memory more efficiently
by identifying inactive fragmented superpages. Furthermore, the
in-place promotions contribute to the 1.65 speedup of Async-256,

which is already much higher than all of the other non-Quick
silver systems. The more aggressive promotion threshold of
Async-64 leads to a slightly higher 1.68 speedup.

Second, Sync-64 outperforms Async-64 with a speedup of 2.11.
Again, the asynchronous deallocation is beneficial. However, in
addition, the synchronous all-at-once preparation implemented
by bulk zeroing in Sync-64 efficiently removes the delay of creat-
ing superpages. With the same number of superpages created,
Sync-64 is able to reduce page walk pending cycles by 76%. Finally,
Sync-1 obtains the highest speedup of 2.18 with a more aggressive
promotion threshold. While the speedups on the other applications
are not as dramatic, the underlying trends are the same.

Conclusion
The solution to perceived performance issues with transparent
superpages is not to disable them. Rather it is to carefully under-
stand how superpage management systems work so that they can
be improved. The explicit enumeration of the five events involved
in the life of a superpage provides a framework around which
to compare and contrast superpage management policies. This
framework and analysis yielded several key observations about
superpage management that motivated Quicksilver’s innovative
design. Quicksilver achieves the benefits of aggressive superpage
allocation, while mitigating the memory bloat and fragmentation
issues that arise from underutilized superpages. Both the Sync-1
and Sync-64 variants of Quicksilver are able to match or beat
the performance of existing systems in both lightly and heavily
fragmented scenarios, in terms of application performance, tail
latency, and memory bloat.

GraphChi-PR canneal DSjeng XZ

Ingens 1.13 1.00 1.01 1.02

HawkEye 1.11 1.01 0.97 1.02

FreeBSD 1.10 1.05 1.04 1.02

Sync-1 2.18 1.12 1.10 1.14

Sync-64 2.11 1.12 1.11 1.14

Async-64 1.68 1.12 1.11 1.13

Async-256 1.65 1.16 1.08 1.13

Table 6: Performance speedup over Linux in a fully fragmented system
(Frag-100)

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  27

SYSTEMS
Understanding Transparent Superpage Management

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” in Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’08),
pp. 72–81: https://dl.acm.org/doi/10.1145/1454115.1454128.

[2] J. Bucek, K.-D. Lange, and J. V. Kistowski, “SPEC CPU2017:
Next-Generation Compute Benchmark,” in Companion of the
2018 ACM/SPEC International Conference on Performance
Engineering (ICPE ’18), pp. 41–42: https://dl.acm.org/doi/pdf/10​
.1145/3185768.3185771.

[3] M. Gorman and P. Healy, “Supporting Superpage Allocation
without Additional Hardware Support,” in Proceedings of the 7th
International Symposium on Memory Management (ISMM ’08),
pp. 41–50: https://dl.acm.org/doi/10.1145/1375634.1375641.

[4] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel,
“Coordinated and Efficient Huge Page Management with
Ingens,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16),
pp. 705–721: https://www.usenix.org/system/files/conference​
/osdi16/osdi16-kwon.pdf.

[5] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-
Scale Graph Computation on Just a PC,” in Proceedings of the
10th USENIX Symposium on Operating Systems Design and
Implementation, (OSDI ’12), pp. 31–46: https://www.usenix.org​
/system/files/conference/osdi12/osdi12-final-126.pdf.

[6] J. Navarro, S. Iyer, P. Druschel, and A. L. Cox, “Practical,
Transparent Operating System Support for Superpages,” in Pro-
ceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02), pp. 89–104: https://www.usenix.org​
/legacy/events/osdi02/tech/full_papers/navarro/navarro.pdf.

[7] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye: Efficient
Fine-Grained OS Support for Huge Pages,” in Proceedings of
the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19),
pp. 347–360: https://dl.acm.org/doi/10.1145/3297858.3304064.

[8] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin, “Large Lin-
ear Classification When Data Cannot Fit in Memory,” in Pro-
ceedings of the 22nd International Joint Conference on Artificial
Intelligence, pp. 2777–2782: https://www.ijcai.org/Proceedings​
/11/Papers/462.pdf.

[9] W. Zhu, A. L. Cox, and S. Rixner, “A Comprehensive Analy-
sis of Superpage Management Mechanisms and Policies,” in
Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20), pp. 829–842: https://www.usenix.org​
/system/files/atc20-zhu-weixi_0.pdf.

https://dl.acm.org/doi/10.1145/1454115.1454128
https://dl.acm.org/doi/pdf/10.1145/3185768.3185771
https://dl.acm.org/doi/pdf/10.1145/3185768.3185771
https://dl.acm.org/doi/10.1145/1375634.1375641
https://www.usenix.org/system/files/conference/osdi16/osdi16-kwon.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-kwon.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-126.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-126.pdf
https://www.usenix.org/legacy/events/osdi02/tech/full_papers/navarro/navarro.pdf
https://www.usenix.org/legacy/events/osdi02/tech/full_papers/navarro/navarro.pdf
https://dl.acm.org/doi/10.1145/3297858.3304064
https://www.ijcai.org/Proceedings/11/Papers/462.pdf
https://www.ijcai.org/Proceedings/11/Papers/462.pdf
https://www.usenix.org/system/files/atc20-zhu-weixi_0.pdf
https://www.usenix.org/system/files/atc20-zhu-weixi_0.pdf

