
28    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

PROGRAMMINGInterview with Ion Stoica
R I K F A R R O W

Ion Stoica is a professor in the
EECS Department at the Univer-
sity of California, Berkeley, and
the director of RISELab (https://
rise.cs.berkeley.edu/). He is cur-

rently doing research on cloud computing and
AI systems. Past work includes Apache Spark,
Apache Mesos, Tachyon, Chord DHT, and Dy-
namic Packet State (DPS). He is an ACM Fellow
and has received numerous awards, including
the Mark Weiser Award (2019), SIGOPS Hall of
Fame Award (2015), SIGCOMM Test of Time
Award (2011), and ACM doctoral dissertation
award (2001). He also co-founded three com-
panies: Anyscale (2019), Databricks (2013),
and Conviva (2006). istoica@berkeley.edu

Rik is the editor of ;login:.
rik@usenix.org

I came across “Cloud Programming Simplified: A Berkeley View on
Serverless Computing” via The Morning Paper website and started
reading [2]. It turns out that this paper is a follow-up to a 2009 technical

report on cloud computing [1]. I started asking people I knew in the authors’ list,
and Ion Stoica agreed to answer some questions I had about the two reports.

Rik Farrow: Cloud computing brought real advantages, but it left some things essentially
unchanged. Organizations no longer needed to buy and maintain hardware, and virtualiza-
tion meant that hardware could be better utilized. But system administrators still needed
to manage their virtual systems, and networking had become more complex. The technical
report written by a group at UC Berkeley in 2009 [1] covered these issues in great detail, along
with conjectures about how things would evolve over time. How well did this group do with
their future projections?

Ion Stoica: Cloud computing succeeded beyond our highest expectations. When we wrote
the paper, cloud computing was still a curiosity. Outside of research groups and startups,
few organizations bet on cloud. Fast-forward to today and almost every company either
uses cloud or is planning to do so. Cloud evolved into a huge market. During the last quarter
alone, Microsoft Azure’s revenue (including other as-a-service products) passed $11B, AWS
exceeded $10B, and Google Cloud reached $2.8B. Even companies like Oracle, who were skepti-
cal of cloud computing at that time, are now putting the cloud at the center of their strategy.

In part, this happened because many of the challenges we listed in our paper were addressed or
at least alleviated. Here are just a few examples. The availability of cloud services such as S3
has increased dramatically from two 9s in 2008 (as we reported in our original paper) to four
9s. The performance has increased considerably as well. Today the majority of instances use
SSDs instead of HDDs, and there are instances that offer terabytes of RAM and up to 40-Gbps
connections. These are at least one order of magnitude improvements over the last decade.

Cloud security made big strides. Today, every major cloud provider offers a myriad of security
certifications (e.g., HIPAA, SOC 2, FedRAMP) and even supports new certifications such
as GDPR, which were just research proposals a decade ago. Furthermore, cloud providers
have started to provide support for hardware enclaves (e.g., Azure Confidential Computing),
as well as software enclaves (e.g., AWS Nitro). This allows developers to deploy security
protocols and applications not possible before. As a result, virtually every industry is migrat-
ing to the cloud, including the ones with stringent security requirements, such as health care,
financial services, and retail.

Cloud providers have also improved the ability to scale quickly. In particular, with the advent
of serverless computing, customers can instantiate new (function) instances in sub-seconds.

Finally, data locking is more of a mixed bag. On one hand, cloud providers have pushed
for proprietary solutions to support data analytics (e.g., BigQuery, RedShift, CosmosDB),
machine learning (e.g., SageMaker, Azure ML, Google AutoML), and resource orchestration
and management (e.g., Cloud Formation, Azure Factory). On the other hand, virtually every
cloud provider hosts virtually every major open source software system, including Hadoop,
Spark, Kafka, Redis, Kubernetes, and many more.

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  29

PROGRAMMING
Interview with Ion Stoica

Furthermore, a new generation of companies has been successful
in providing multi-cloud services, such as Databricks, Confluent,
MongoDB, Snowf lake, and many more. Part of their success
stems from the desire of many enterprises to avoid cloud provider
lock-in. I am confident that this will accelerate the standardiza-
tion of the cloud.

RF: There wasn’t just a single step from cloud to serverless.
Instead, large cloud providers had already started providing
some API-based services, such as storage (S3) and Google App
Engine. While these are still important today, except for back-
end-as-a-service (BaaS), they don’t seem to have become domi-
nant in the move to cloud functions. Do you see an increasing role
for BaaS going forward, or have most niches already been filled?

IS: Yes, I expect an increasing role for BaaS. We are already see-
ing this. For example, Google’s Biquery and AWS’s Aurora and
Athena are rapidly growing in popularity and are supporting
more and more traditional database workloads. In addition, we
are seeing an increase of BaaS offerings in machine learning,
such as Amazon Elastic Inference and Google AutoML.

One reason I expect BaaS to grow in popularity is because the
cloud providers have every incentive to push for such services,
as they provide higher levels of functionality, which translates
to higher revenue and increased “stickiness.”

RF: When cloud functions first appeared, cloud providers would
provision containers within virtual machines for security pur-
poses. That appears to have shifted over the last several years,
with the replacement of VMs with sandboxed container run-
times like gVisor and Firecracker. While these are lighter weight
and faster to start up and shut down than VMs, they still appear
heavyweight to me. Comments?

IS: Yes, it is true that these are more heavyweighted compared to
a simple process or a container. At the same time, as you men-
tioned, they are significantly lighter and faster than VMs. And I
am sure they will improve over time, as researchers and practi-
tioners are continuously optimizing these abstractions.

At the same time, when we are talking about the startup time, we
need to look at the big picture. In many cases, the real startup over-
head is not to start these containers but to initialize them. For
example, the Python environment (e.g., libraries) can easily take
hundreds of MBs. Even assuming all data is local and stored on
a fast SSD, it might take many seconds to load the libraries and
initialize the environment. This can take significantly more time
than starting a container. So at least from the startup time point
of view, and at least for some applications, the existing sandboxed
containers might be already good enough.

RF: Elasticity is one of the most important aspects of cloud func-
tions: both the automatic scaling of function containers as neces-
sary, as well as only having to pay for the resources used instead

of reserving those speculatively. But you mention that there are
still very real limitations to elasticity in the current support for
cloud functions. What are those limitations and how might they
be satisfied?

IS: The big challenge with elasticity is that it is at odds with
virtually every requirement desired by developers. Each of these
requirements adds constraints to where the cloud function can
run, which fundamentally limits elasticity. In particular, users
want specialized hardware support (e.g., GPUs), they want to run
arbitrarily long cloud functions, they want better performance
(e.g., co-location), they want fast startup times (e.g., run on nodes
which cache the code), and they want security (e.g., do not share
the same physical nodes with other tenants when running sensi-
tive code).

Two approaches to address these challenges are (1) relaxing
these constraints and (2) workload prediction. One example of
relaxing these constraints is developing a low-latency high-
throughput shared storage system to store the cloud function’s
code and environment. Such a system can obviate the need to run
a cloud function on a node that has already cached the function’s
environment. Such a storage system could also be used to effi-
ciently take checkpoints, preempt cloud functions, and restart
them on a different node. This could allow cloud providers to
relax the running time limits of the functions without hurting
elasticity.

Another example is improving the security of cloud functions,
which could remove the need to avoid sharing nodes across dif-
ferent tenants running sensitive code.

The other approach to improve elasticity is predicting the
workload or application requirements. For instance, if it takes
more time to acquire the resources than the application affords,
the natural solution is to predict when the application needs
these resources and allocate them ahead of time. This will likely
require a combination of the application itself providing some
hints about its workloads, and machine learning algorithms
accurately predicting the application’s workload and communi-
cation patterns.

RF: One of the biggest advantages of cloud functions is that they
put programmers in control, turning operations largely over to
the provider’s automation. The downside of cloud functions for
programmers is that offerings differ widely from provider to
provider: there is no standardization. That means customers get
locked in to a particular provider, and migration means refactor-
ing entire services. Do you see a way forward here?

IS: This is an excellent point. Cloud providers have the natural
incentive to provide differentiated serverless APIs, which can
lead to locking.

30    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

PROGRAMMING
Interview with Ion Stoica

However, we are starting to see early efforts to provide cross-
cloud open source serverless platforms, such as PyWren or Open
Lambda, and Apache OpenWhisk. While a dominant open source
platform has still to emerge, previous developments give us
hope. In particular, at the lower layer of resource orchestration,
Kubernetes has already become the de facto standard for con-
tainer orchestration, and all major cloud providers are support-
ing it (in addition to their own proprietary offerings).

RF: Programmers must learn new programming paradigms
for cloud functions. One function doesn’t call another. Instead,
programmers must use RPCs, temporary storage, events/queue-
ing, all things that are likely unfamiliar to many programmers.
Recently, companies have started to talk about No-code as a way
of hiding even more lower-level details, making the use of cloud
functions and BaaS even easier. I first heard of this idea around
1989, as “Fifth Generation Programming Languages,” an idea
that never went anywhere. What do you consider the best way to
overcome the barriers to programming using cloud functions?

IS: This is an excellent question. I believe that we will see the
emergence of new programming systems that will simplify
distributed programming. One example is Ray, a system we have
developed in RISELab at UC Berkeley over the past several years.
Ray provides support not only for stateless functions, but also
for stateful computations (i.e., actors) as well as an in-memory
object store for efficient data sharing. In addition, there are many
other research projects at Berkeley and elsewhere that aim to
provide distributed shared memory abstractions for serverless:
for example, Anna [3].

This being said, there are several hard challenges which we
will need to address. These challenges stem from the physical
characteristics of the underlying infrastructure: the latency of
accessing data remotely can be orders of magnitude higher than
accessing data locally; the throughput to access data on GPUs
is 10× the throughput of local RAM, which is in turn >10× the
throughput to a remote node. As a result, the overhead of execut-
ing a function remotely can be orders of magnitude higher than
executing the function locally. Addressing these challenges calls
for new research in compilers that can automatically decide
whether a function should be executed locally or remotely and, if
remotely, where.

Another challenge, and one of the holy grails of the programming
languages, is automatically parallelizing a sequential program.
This is a very hard problem which has not been fully solved
despite decades of research. This being said, I expect the emer-
gence of serverless computing will spur new efforts that will
push the state of the art. In the shorter term, I expect to see tools
that target automatic parallelization of specialized workloads,
such as big data and ML, as well as tools that assist developers
with parallelizing their applications (instead of automatically
parallelizing them).

RF: In section 3 of the 2019 paper, you cover five applications
that serve to illustrate the current limitations to cloud functions.
Summarizing Table 5, these are: object store latency too high,
IOPS limits, network broadcast inefficient, lack of fast storage,
and lack of shared memory. What, if anything, has changed since
your report was written?

IS: It’s just a bit over one year since we published our report on
serverless computing. Many challenges still remain, but we are
already seeing some technologies being developed to alleviate
these challenges. These developments are both in the serverless
space and in adjacent areas (which I expect will likely impact the
serverless space down the line).

In the serverless space, one interesting announcement at the last
AWS reinvent was “provision concurrency for lambdas.” In a nut-
shell, this enable users to predefine a number of instances (e.g.,
concurrency level) of lambdas that can start executing devel-
opers’ code within a few tens of milliseconds of being invoked.
This can go a long way toward making the process of scaling up
predictable.

Outside serverless space, an exciting development is the Nitro
enclave announced at the same event. This enclave provides both
better security and better performance than existing instances.
In particular, Nitro provides CPU and memory isolation for EC2
instances, as well as integration with the AES Key Management
system. This enables new applications to protect highly sensi-
tive data such as personally identifiable information (PII) and
healthcare and financial data. In addition, they improved the
bandwidth to EBS (Elastic Block Storage) by 36%, from 14 Gbps
to 19 Gbps. Lambdas can already use EBS, and I expect some of
the secure technologies in Nitro will later migrate to serverless.

References
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaha-
ria, “Above the Clouds: A Berkeley View of Cloud Computing,”
Technical Report, 2009: https://www2.eecs.berkeley.edu​
/Pubs/TechRpts/2009/EECS-2009-28.pdf.

[2] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A.
Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth, N.
Yadwadkar, J. E. Gonzales, R. A. Popa, I. Stoica, and D. A. Pat-
terson, “Cloud Programming Simplified: A Berkeley View on
Serverless Computing,” arXiv, February 9, 2019: https://arxiv​
.org/pdf/1902.03383.pdf.

[3] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling
Tiered Cloud Storage in Anna,” in Proceedings of the VLDB
Endowment, vol. 12, no. 6 (February 2019), pp. 624–638: http://​
www.vldb.org/pvldb/vol12/p624-wu.pdf.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
https://arxiv.org/pdf/1902.03383.pdf
https://arxiv.org/pdf/1902.03383.pdf
http://www.vldb.org/pvldb/vol12/p624-wu.pdf
http://www.vldb.org/pvldb/vol12/p624-wu.pdf

