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Real-world data is crucial in understanding and improving our world, 
from health care to datacenters. To help the computer systems com-
munity with data-driven decisions, we open-source a collection of 

fine-grained, low-level operational logs from the largest public-sector data-
center in the Netherlands (SURFsara). In this article, we describe the infra-
structure providing the data, give examples of some of this data, and perform 
thorough statistical analysis to indicate that this ongoing collection not only 
reflects the ground truth but will be useful to designers and maintainers of 
large clusters, and generally to computer systems practitioners.

Medical professionals employ MRI images to look inside our bodies, thus gaining a deeper 
understanding of the spread and effects of diseases. Open-source collections [1] of medi-
cal images enable building or improving analysis tools and training new professionals. In 
contrast, for computer systems, we do not yet fully benefit from MRI-like views on datacenters. 
Open source operational traces are scarce and bereft of low-level metrics. Absent such met-
rics, large-scale systems experts and infrastructure developers are currently forced to design, 
implement, and test their systems using unverified, sometimes even unrealistic, assump-
tions. The operational traces we propose help alleviate this problem. Moreover, low-level 
details of MRI images also offer clinicians predictive capabilities on the evolution of diseases. 
Similarly, our operational traces would allow for predictive analysis of systems behavior.

Real-world data can be instrumental in answering detailed questions: How do we know 
which assumptions regarding large-scale systems are realistic? How do we know that the 
systems we build are practical? How do we know which metrics are important to assess when 
analyzing performance? To answer such questions, we need to collect and share operational 
traces containing real-world, detailed data. The presence of low-level metrics is not only 
significant, but they also help researchers avoid biases through their variety. To address 
variety, there exist several types of archives, such as the Parallel Workloads Archive, the Grid 
Workloads Archive, and the Google or Microsoft logs (the Appendix gives a multi-decade 
overview). However, such traces mostly focus on higher-level scheduling decisions and high-
level, job-based resource utilization (e.g., consumed CPU and memory). Thus, they do not 
provide vital information to system administrators or researchers analyzing the full-stack or 
the OS-level operation of datacenters. 

The traces we are sharing have the finest granularity of all other open-source traces pub-
lished so far. In addition to scheduler-level logs, they contain over 100 low-level, server-based 
metrics, going to the granularity of page faults or bytes transferred through a NIC. The metrics 
presented in this article are gathered every 15 seconds from a GPU cluster at SURFsara, total-
ing over 300 servers. This cluster includes high-speed networks and storage devices, and it 
is being used for scientific research in the Netherlands in areas such as physics, chemistry, 
weather prediction, machine learning, and computer systems. 

This archive is a valuable resource for many professionals: software developers, system 
designers, infrastructure developers, machine learning practitioners, and policy-makers. 
During 2020, we will release monthly on Zenodo the trace data gathered in the previous 30 
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days, as FAIR (see https://www.go-fair.org/fair-principles/) open data. In this article, we 
provide a high-level overview of the metrics and data we gather, and a high-level character-
ization of the first three months of operation in 2020. 

Three Months in the Life of a Datacenter
The SURFsara datacenter is used mostly by researchers from the Netherlands, running 
workloads in areas such as physics, chemistry, weather forecasting, machine learning, and 
computer systems. Users run primarily HPC-like workloads and deep-learning training, 
using combinations of regular CPU-, and multi-GPU-servers. A minority of the workloads 
run on big-data-like systems. 

Figure 1 and Table 1 present a summary of several metrics computed over all the GPU servers 
in the LISA cluster over three months. The individual data points in Figure 1 represent the 
maximum value for a given hour over all servers, normalized to the maximum value of that 
metric for the whole period. Table 1 presents the range of values we encountered. We depict 
here only 10 metrics out of the 100+ collected. Even this high-level summary can be useful 
to datacenter engineers. For example, the alternation of the five colors for the metric GPU 
Fanspeed shows that the maximum fan speed for a GPU in the LISA cluster varies signifi-
cantly during the three months analyzed, suggesting that there are very different levels of 
load in the system over this period. Engineers have to be alert, especially when the load is 
extreme, either very high or very low. 

Our logs register all the interactions of user workloads with the datacenter itself. They also 
register maintenance events (e.g., adding or replacing servers—these are events which can be 
derived from the metrics), and unusual events (e.g. job failures, server failures, reboots). Last, 

Figure 1: Metric variety and server load variability of the GPU-enabled servers in the LISA cluster over three 
months (January 1–March 31, 2020). Each data point represents the maximum value a server has encoun-
tered for that metric, normalized to the highest encountered value for that metric. The online version of this 
article shows this heat-map in color.

Metric Min Max Median Mean CoV
Server Temperature (Celsius) 24 35 26 26 0.08

GPU Temperature (Celsius) 23 91 31 36 0.38

GPU Fanspeed (Percentage) 0 100 0 8 1.93

Network RX Packets (# packets x 16) 0.000003 18 0.460 1 1.73

Disk I/O Time (ms x 16) 0.0008 82 9 12 1.01

Host Free Memory (GB) 0.602 268 256 222 0.31

GPU Used Memory (GB) 0 12 0 1 1.96

Server Power Usage (Watt) 0 1400 312 401 0.59

Context Switches (# switches x 19) 0.0000052 216 12 23 1.2

CPU Load (Run-queue length) 0 7000 1 12 18.1

Table 1: Value range, median, mean, and coefficient of variation for each metric depicted in Figure 1.
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they capture phenomena, such as sudden drops in activity, or 
low system load. Figure 1 depicts such a phenomenon: at almost 
all times, the majority of the GPU-enabled servers have their 
host-CPU underutilized, but simultaneously their GPUs, their 
networking, and their I/O subsystems experience high utiliza-
tion. System designers could leverage this empirical observation.

Performing the analysis exemplified in Figure 1 shows that there 
is ample load variability inside the LISA system. Yet, explaining 
it is complex. This load variability stems from load imbalances 
due to varying user-demand, occasionally poor scheduling deci-
sions, and lacking load balancing over the entire set of servers. 
Only after understanding this complexity can we hope to tame 
the large design-space for resource management and scheduling 
decisions in modern datacenters. Moreover, Figure 1 depicts a 
recent trend we perceive in datacenter operations: GPU-servers 
are underutilized in terms of CPU load, so here it may be more 
cost-effective to equip the servers with less powerful (and 
cheaper) CPUs.

The SURF Archive
Datacenters already exhibit unprecedented scale and are 
becoming increasingly more complex. Moreover, such computer 
systems have begun having a significant impact on the environ-
ment: for example, training some machine learning models has 
sizable carbon footprints [2]. As our recent work on modern data-
center networks shows [3], low-level data is key to understanding 
full-stack operation, including high-level application behavior. 
We advocate it is time to start using such data more systemati-
cally, unlocking its potential in helping us understand how to 
make (datacenter) systems more efficient. We advocate that our 
data can contribute to a more holistic approach, looking at how 
the multitude of these systems work together in a large-scale 
datacenter. 

SURFsara operates several systems inside their datacenter. In 
this archive, we release operational data from two of SURFsara’s 
largest production clusters: LISA and Cartesius. The former is 
a 300+ server cluster containing more than 200 GPUs, inter-
connected with 40-Gbps and 10-Gbps networks. The latter 
is a 2000+ server cluster containing 132 GPUs and 18 Intel 
last-generation KNLs. The rest of the servers are a combination 
of thin (24 cores and 64 GB memory) and fat machines (32 cores 
and 256 GB memory). The total number of cores in Cartesius is 
roughly 47K, amounting to 1.8 PFLOPS double precision. Most 
servers are connected by an FDR InfiniBand network, ensuring 
56 Gbps peak bandwidth, with a subset (18 Intel KNL and 177 
Intel Broadwell) connected by an EDR InfiniBand network that 
enables 100 Gbps peak-bandwidth.  

We gather metrics, at 15-second intervals, from several data 
sources:

 3 Slurm: all job, task, and scheduler-related data, such as running 
time, queueing time, failures, servers involved in the execution, 
organization in partitions, and scheduling policies.
 3 NVIDIA NVML: per GPU, data such as power metrics, tem-
perature, fan speed, or used memory.
 3 IPMI: per server, data such as power metrics and temperature.
 3 OS-level: from either procfs, sockstat, or netstat data: low-
level OS metrics, regarding the state of each server, including 
CPU, disk, memory, network utilization, context switches, and 
interrupts. 

We also release other kinds of novel information, related to data-
center topology and organization.

The audience we envision using these metrics is composed of 
systems researchers, infrastructure developers and designers, 
system administrators, and software developers for large-scale 
infrastructure. The frequency of collecting data is uniquely high 
for open-source data, which could allow these experts unprec-
edented views into the operation of a real datacenter.

Our traces will benefit multidisciplinary teams in building bet-
ter schedulers, better co-locating workloads to improve resource 
utilization and minimize interference. Recently, systems experts 
started teaming up also with machine-learning experts to 
produce AI-enhanced systems such as learned database indexes 
(work done by Tim Kraska et al.). All these stakeholders could 
benefit from our many low-level server metrics, which uniquely 
complement scheduler logs. Uniquely, our traces could help 
experts to understand how specific workloads interact with the 

Figure 2: The schema for our collection of datacenter metrics. The figure 
highlights the novel components we propose, compared to state-of-the-art 
datacenter archives. 
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hardware, with each other, and where faults and performance 
issues originate.

Figure 2 presents a high-level view of the schema of the archive 
we propose. The structure resembles a snowflake schema, with 
the central fact table representing the low-level, high-resolution 
metrics we collect every 15 seconds from our datacenters. The 
dimension tables represent all other data that we can use to 
interpret and analyze the fact table. As SURFsara users run jobs, 
a data set of job-related metrics records scheduler logs (e.g., from 
Slurm). Simultaneously, many independent tools (e.g., Nvidia 
Management Layer (NVML)) gather data from each server and 
push them into the fact table. We keep a separate table contain-
ing the list of metrics we collect, enabling easy addition of met-
rics in the future. Moreover, we explicitly include in the data both 
server-level and topology information.

Our archive is online: https://doi.org/10.5281/zenodo.3878142.

What Our Archive Offers
There are many types of analyses one could do using the data we 
open source, such as the typical sysadmin dashboards exempli-
fied by Figure 3. From utilization-level metrics, sysadmins can 
identify interesting points or correlations that could be examined 
in more detail, thus improving the daily operation of the data-
center. Using the data in this figure, one could easily correlate 
temperature increases with, for example, data received over 
networks, increase in I/O time, and context switches. 

Other kinds of analyses are more complex, requiring data science 
techniques to delve deeper into possible meaning and correla-
tions in our time-series data. Time series in datacenters often 
display sequential dependencies, meaning the value of a data 
point is statistically dependent on a previous one. One of the 
possible steps in analyzing time series is performing regression 

analysis, which assumes independence of observations. To 
ascertain the practical usefulness of our data, we perform some 
basic analytics.

We first investigate whether the time series is linearly corre-
lated to a lagged version of itself, using the Pearson correlation 
for two independent variables, or, in time series terminology, 
autocorrelation. Figure 4 plots this autocorrelation to provide 
an insight into the possibility to reduce the amount of data [4]. 
We use the metric Server Power Usage averaged over the GPU-
enabled nodes. The confidence interval, depicted in light gray/
blue in the figure, lies between -0.2 and 0.2. The figure shows 
that high correlation values occur for small lags, which is reason-
able considering the 15 second sampling frequency.

To further assess the usefulness of the collected metrics, we 
evaluate a first-order autoregression model, a parametric 
technique for fitting the observations. As Figure 5 depicts, 

Figure 3: A dashboard to visualize 10 metrics for a single GPU-enabled server in the LISA datacenter. Each metric is normalized by the maximum value en-
countered during the three months recorded for this server. For all but the “Host Free Memory,” higher means more loaded.

Figure 4: Pearson autocorrelation plot for the server power usage metric. 
Each point represents a period of 15 seconds. The light gray/blue shaded 
area represents confidence intervals. The horizontal axis shows 15 second 
lags, the vertical axis shows correlation values.
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we measure the solution quality by computing the absolute 
distance between predictions and the ground truth. We chose 
518,918 points for fitting the model and tested on 5,242 values, 
normalized between 0 and 1, by subtracting from each value the 
minimum and then dividing the result by the difference between 
maximum and minimum. We did no additional filtering. The 
autoregression histogram in Figure 5 (left) suggests a reason-
able fit for the Server Power Usage metric. However, in Figure 
5 (right), we see a possible overfitting behavior when scatter-
plotting the predictions against the ground truth. It seems that 
this simple technique is only capable of predicting the limited 
interval between 0.6 and 0.8, which is close to the normalized 
average (0.57), with the whole range being 0.17, 1 for this metric. 
This is an example of how data scientists could start analyzing 
our data. More in-depth analyses are certainly possible. We leave 
this for future work and invite others to run their analyses on the 
data we open-source.

Conclusion
Realistic assumptions are at the core of building and operating 
computer systems. Ideally, experts derive these assumptions 
from data gathered long-term from datacenters in the wild, with 
the finest of granularities and at the deepest levels of system 
information. Unfortunately for the computer systems commu-
nity, only a few organizations currently have access to such data. 
Existing data sets and trace archives are bereft of such metrics, 
limiting their ability to support deeper insights.

We offer, as open-source and FAIR data, over 100 low-level 
metrics gathered at fine granularity from the largest public data-
center in the Netherlands, hosted by SURFsara. In this article, 
we gave examples and provided an initial analysis over a GPU-
enabled cluster inside this datacenter. We showed there are large 

amounts of variability and imbalances, and correlations between 
several low-level metrics. Thus, there is value in performing 
data science analysis over our time-series data. We invite all 
researchers, practitioners, system designers, and datacenter 
operators to download and put to good use our open-source 
archive.
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Appendix—On the Elusive Pursuit of Sharing Trace Archives
This work follows in the footsteps of major achievements. 
The importance of tracing was becoming apparent to the 
broad systems community at least since the mid-1960s, when 
instrumentation for collecting operational traces was made 
available as part of OS/360. By the early 1970s, the systems 
community was already discussing the importance of using 
real traces in performance engineering, and by the beginning 
of the 1990s this practice had already become commonplace. 

Until the advent of the Internet, the sharing of traces seemed 
at best haphazard. The mid-1990s have witnessed the birth 
of trace archives, with the most prominent being the Internet 
Trace Archive (ITA, 1995). Focusing on the operation of the 
Internet, the ITA exhibits many modern features such as data 
collection and processing tools, and, most importantly, data 
shared with policies that today would be labeled as FAIR. 

Established in the late 1990s, the Parallel Workloads Archive 
(PWA) [1] is perhaps the most successful example of how 
shared traces can help shape a community. The PWA started 
with just a few traces but a good format for sharing, and today 

it shares traces collected from about 35 environments, mostly 
from parallel production supercomputers and clusters, but 
also from research and production grids. Since the mid-
2000s, sustained efforts have led to the creation of the Grid 
Workloads Archive [2] (2006), the Failure Trace Archive 
[3] (FTA, 2010), the Peer-to-Peer Trace Archive (2010), the 
Workflow Trace Archive [7] (2019), and the Computer Failure 
Data Repository, hosted by USENIX.

In the 2010s, the computing industry was transformed by the 
move to cloud services and by the advent of big data. Unsur-
prisingly, studies of how such systems operate have led to 
sharing of characteristics (notably, from Facebook, Yahoo, 
IBM, Taobao) and, rarely, of traces such as the multi-day trace 
from a large cluster at Google [4] or Microsoft [6]. Although 
sharing traces has been very useful for the community, 
the presence of only one or a few traces cannot account for 
the tremendous diversity of traces present “in the wild” as 
reported periodically by analytical studies [5]. 
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