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Transient execution attack methods and their mitigations have been 
subject to much scrutiny in recent years. While new hardware plat-
form designs are built to mitigate these methods, existing systems 

may need to implement microcode or software mitigations. But due to the 
complexity and variety of these methods, system administrators may wonder 
what, when, and how to mitigate their systems. We examine common mitiga-
tion approaches for the Microarchitectural Data Sampling (MDS) and Trans-
actional Asynchronous Abort (TAA) methods, how these mitigations help 
prevent attackers from leaking data, how they work to prevent attackers from 
leaking data, and how sysadmins can configure the mitigations depending on 
the needs of their environment.

Hardware Vulnerabilities and Transient Execution Methods
In recent years, researchers have demonstrated a novel set of methods known as transient 
execution attacks (TEA, formerly termed speculative execution side channel), which target 
some of the hardware designs introduced in many modern processors, in particular specula-
tive execution. The leading researchers have detailed several variants of this new class of 
methods that target different hardware components and instructions that execute transiently 
under various conditions. The hardware industry has responded by issuing microcode updates 
for affected platforms, developing software techniques to mitigate affected instructions, 
and changing the designs of new processors. These efforts help ensure that by the time new 
variants are disclosed, users can protect their systems against potential implementations of 
these methods. This is a common process that the industry has used to mitigate other hardware 
issues and errata in the past [1].

Demystifying Microcode
Hardware manufacturers have been using microcode (μcode) since the mid-1990s, among 
other things to fix bugs found on existing processors. μcode is a way to modify the behavior 
of hardware without changing the silicon itself by changing how the CPU translates instruc-
tions into micro-operations (μops). For example, when a CPU executes x86 instructions, 
parts of the CPU decode each instruction into a sequence of machine-readable μops that 
defines what the instruction does. Microcode updates allow hardware manufacturers to 
modify how particular instructions translate into μops, thereby changing the instruction’s 
behavior.

Software Stack
As seen in Figure 1, there are many different elements in the software stack. Depending on 
the issue, different components of this stack might change to accommodate new optimiza-
tion, hardware functionality or to complement μcode changes with additional features. For 
example:

Antonio is a software engineer 
at Intel where he focuses on 
security software mitigations. He 
holds a PhD in computer science 
and has worked in different 

roles in the areas of performance, computer 
architecture, parallel programming, and security 
for the last 15 years.  
antonio.gomez.iglesias@intel.com

Evan Peregrine is a software 
ecosystem engineer at Intel, 
specializing in long form 
technical documentation. 
He contributed to the ACPI 

specification, Clear Linux, 01.org, and 
Zephyr Project before joining Intel’s software 
security communications team in 2018. 
evan.c.peregrine@intel.com

Agata Gruza has been at Intel 
for over five years working on 
performance optimizations 
of big-data frameworks like 
Cassandra, Spark, and Hadoop 

for Intel Architecture. Currently, she is a lead 
performance engineer and focuses on Linux 
kernel software mitigation. Agata is a Google 
(Android Developer) and Facebook AI (Secure 
and Private AI) scholarship recipient. She 
holds double MS in computer science and 
mathematics from Montana State University 
and The John Paul II Catholic University of 
Lublin, Poland, respectively. She is an open 
source contributor and a founder of Women in 
Big Data NorthWest Chapter. In her free time 
Agata enjoys hiking and outdoor activities. 
agata.gruza@intel.com



www.usenix.org	   FA L L 2020   VO L .  45 ,  N O.  3  43

SRE
Practical Mitigation Guidance for Hardware Vulnerabilities

 3 The operating system (OS) can include methods that make it more difficult for potential 
malicious actors to target other processes, other users, or the OS itself.
 3 Over the years, we have seen how some of these methods target some popular libraries, 
particularly cryptographic libraries. Popular and well-maintained cryptographic libraries are 
regularly updated to include programming techniques that make these attacks more difficult. 
For example, constant-time implementations of crypto algorithms increase their protection 
against timing methods.
 3 In certain cases, compilers have introduced changes so that the code generated includes 
constructs to increase the protection against potential malicious actors. For example, we saw 
how compilers like gcc included options to protect code against certain Spectre attacks [2].

But the list of software mitigations for these methods does not end here. Software developers 
regularly update virtual machine managers, web browsers, libraries, tools, and middleware to 
help mitigate issues originating in hardware [3].

Characteristics of Transient Execution Methods
We focus here on the recently disclosed Microarchitectural Data Sampling (MDS) [4] and 
Transactional Asynchronous Abort (TAA) [5] methods. In these transient execution attacks 
(TEA), both the victim (process, kernel, etc.) and the malicious actor must share some physi-
cal computing resources. This means that these methods have several inherent restrictions:

 3 Remote attacks are difficult or not possible. A malicious actor will typically require having 
local access to a system.
 3 Any data is accessed in read-only mode. Malicious actors cannot change or roll back a 
system’s data.
 3 There is no direct privilege escalation. A malicious process cannot give itself root access.
 3 In some methods, attackers have little or no control over what data they can access. Sophisti-
cated analysis techniques are required to parse secret data out of system noise.
 3 Both victim and attacker must run on the same physical core.
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Figure 1: Modern software stack
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In addition to these limitations, most TEA share the following 
procedure:

1.	 Access target data
2.	 Send data through a covert channel
3.	 Receive data from the covert channel
4.	 Analyze the data for secrets

To demonstrate, consider the following typical scenario: a mali-
cious actor wishes to extract data from a public cloud system 
where multiple users can access the same machine and run any 
type of code. In this type of system, an orchestrator or another 
piece of software will assign a user to a machine according to the 
user’s specified requirements, and the user has little to no control 
over which machine they are assigned to. The assigned system 
will typically also be running other users or processes that have 
been allocated in the same manner, which means a malicious 
actor has little to no control over which users or processes they 
can attack. Because these other users and processes can run 
arbitrary code, a malicious actor needs to work really hard to find 
a way to force a victim to run a workload that may be of interest 
to the attacker, and the attacker must also devise a way to infer 
what code the victim is running. Finally, if the attacker wishes to 
implement a data sampling method, the malicious process must 
share those key computational resources for an extended period 
of time with the victim process to establish certain data access 
patterns that the attacker can analyze to infer the data that the 
victim process was using.

Design and Implementation of Mitigations
While there is not a single recipe to follow when mitigating these 
issues, this section describes the general process used to mitigate 
MDS and TAA. The mitigations for both issues require changes 
at the μcode level and the software level and, therefore, are good 
case studies of the mitigation process for TEA.

Step 1: New Microcode
Let’s review an example of how μcode defines how instructions 
translate into μops executed by the CPU. The MDS and TAA 
methods try to leak stale data from small microarchitectural 
buffers inside the CPU, and the mitigations for these methods 
consist of clearing the affected buffers before their contents 
can be sent through a covert channel. This raises the question 
of when and how those buffers are flushed. We cannot clear the 
buffers in a disorganized fashion, since that could have undesir-
able effects, such as cross-thread attacks, stalls, or performance 
implications. One option we do have is to provide a mechanism so 
software elements higher up in the stack (such as the OS or appli-
cations) can decide when to clear the buffers. For that reason, 
Intel redefined an existing instruction (VERW, Verify Segment for 
Writing) that was deprecated and not in use. On affected sys-
tems, after the μcode update, VERW can be used to flush and clear 
the content of the buffers affected by MDS/TAA.

Step 2: How to Invoke the New Functionality Provided 
by the Microcode (if Required)
Now we have a tool (VERW) that software can invoke to clear those 
buffers. An example of a C function that calls this instruction in 
the Linux kernel is shown below:

static inline void mds_clear_cpu_buffers(void) {
        static const u16 ds = __KERNEL_DS;
        asm volatile(“verw %[ds]” : : [ds] “m” (ds) : “cc”);
}

Listing 1: Linux kernel function to invoke VERW

We mentioned the Linux kernel since the OS invokes this func-
tionality. The OS is the only component of the software stack that 
can protect different users from user-to-user attacks, as well 
as protect the kernel itself from potential attacks originating in 
userspace.

Step 3: Implementing the New Functionality
Now that we have a function like mds_clear_cpu_buffers(), the 
next step is to identify the right places to clear the buffers. The 
most appropriate location to flush the buffers is during a ring 
transition. Ring transitions occur when the system changes the 
privilege level at which code can execute. For example, if a user 
application performs a system call to the kernel, a ring transi-
tion from ring 3 (userspace) to ring 0 (kernel space) occurs. To 
mitigate these issues, the VERW instruction is invoked before the 
system call returns from kernel space back to userspace.

As another example, VERW should be invoked if there is a context 
switch between different processes, regardless of the owner of 
those processes. This prevents attacks on systems that disable 
simultaneous multithreading (SMT), since only one process 
can run on a physical core at any given time, and the buffers are 
cleared before another process runs in the same core.

Step 4: Options to Configure the Mitigation and Report 
Mitigation Status
The last step when it comes to reducing the severity of these 
security issues is to provide mitigation options so that those with 
the right privileges can configure them at boot time, as well as a 
mechanism to detect the status of those mitigations. Sysadmins 
can control mitigations from the kernel command line. A full list 
of available options based on the hardware vulnerability is avail-
able at kernel.org [6]. In most cases, because transient execution 
attacks require a malicious actor to be able to execute locally on 
a system, machines that run only known, controlled, and trusted 
software may be very difficult or even impossible to target with 
these methods. Also, due to the nature of the code and users they 
support, certain systems might not be the target of transient 
execution attacks and may not need the mitigations. For example, 
if after a detailed risk analysis where the usage of the system and 
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the characteristics of TEA are considered, the sysadmin decides 
that the risk of TEA is very low, they may choose to disable the 
mitigations.

In cases where all the userspace applications are trusted and 
don’t execute untrusted code, then mitigations can be disabled. 
System administrators may want to disable the mitigations on 
such systems, as different mitigation options can have perfor-
mance implications. In other cases, when programs have secret 
data that needs to be protected (for example, crypto keys), the 
kernel should provide a full mitigation for the same issue. Also, 
other components of the software stack, like compilers, might 
also put in place options to enable or disable the mitigations. 
System administrators should evaluate their environment and 
workloads and make an educated decision whether security 
mitigations are needed.

Sysadmins can use simple tools to check if a given system is miti-
gated against certain CPU vulnerabilities. In Linux, hardware 
security issues are associated with a report log, which resides in 
sysfs. The output of sysfs indicates if a system is affected by a 
specific method, and whether the system is mitigated or pres-
ently vulnerable.

To reflect recently disclosed vulnerabilities the OS needs to be 
up-to-date, either by updating the existing kernel or upgrad-
ing to the most current one. Updating the OS might seem like a 
daunting task that takes a significant amount of time. To ease 
the burden, security researchers created system vulnerability 
checkers, such as a tool for Linux and BSD available at GitHub [7] 
to detect whether a given machine is affected by TEA methods. 
Those tools provide detailed information about hardware sup-
port for mitigation techniques if a system is vulnerable to TEA, 
whether vulnerable systems can be mitigated with a μcode or OS 
update, or if software changes are required.

Other Techniques for Preventing Attacks
We have seen how these methods take advantage of hardware 
resources that are shared among different processes. It is pos-
sible to limit this resource sharing and thereby reduce the attack 
vector, with some caveats.

The first challenge here is system load. Some systems are 
configured to run many more processes at any given time than 
currently available physical cores on the system. In these cases, 
resource sharing is unavoidable. However, on systems where the 
total number of user processes doesn’t exceed the total number  
of physical cores, it is possible to schedule processes to always 
run on the same physical core and never share that core with 
other processes, thereby reducing the chances for a malicious 
actor to implement one of these methods. Linux tools like 
numactl and taskset can be used to set the affinity of processes 

and implement this type of process scheduling. Also, cgroups can 
be an alternative to create process isolation.

The open source community is working on a Linux kernel sched
uling technique to implement a similar solution. This technique, 
called core scheduler, allows system administrators to tag 
specific processes. Processes sharing a tag can run simultane-
ously on the same physical core (when SMT is enabled), while 
processes with different tags are prevented from running con
currently on the same physical core. When one process stops 
running, either because the process is finished or because the  
OS schedules a different process, the hardware resources (such  
as buffers and branch predictors) are cleared before another 
process can use them. Other operating systems and virtualiza-
tion tools might also implement similar techniques.

The second caveat is interruptions. By default, interrupts can run 
on any core of the system as decided by the OS. So, if that is the 
case, then interrupts might be a target of a potential malicious 
actor. Particularly in systems with SMT on, a malicious actor 
may be able to target the data accessed by the interrupt while 
this interrupt is executing on the same core. However, system 
administrators can now choose to specify cores in the system to 
handle all system interrupts, preventing any user processes from 
running on those cores [8]. System administrators should care-
fully consider the implications of this approach (how it affects 
the overall throughput of the system, the number of system calls 
that are normally handled, etc.).

Conclusion
While transient execution methods have affected many modern 
CPUs, the industry has collaborated to ensure that mitigations 
for these methods are available by the public disclosure date. 
This requires understanding the implications of these methods 
and the optimum solution for mitigation. Since new hardware 
includes mitigations against these methods, an approach might 
be to update the hardware. However, because changing hardware 
takes time, is costly and challenging, other alternatives (like 
updating microcode and making changes to the software stack) 
are needed to mitigate existing vulnerabilities. It’s crucial for 
system administrators to understand that the technical mitiga-
tions are just one component of the security process. Enabling 
sysadmins to choose what mitigation approach works best for 
their environment and workloads is key. Providing alternatives, 
explaining how the different mitigation methods work, and out-
lining the factors to be considered for each mitigation approach, 
all help enable system administrators to choose the most appro-
priate actions.
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