
42    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SRE

Practical Mitigation Guidance for Hardware
Vulnerabilities
A N T O N I O G Ó M E Z - I G L E S I A S , E V A N P E R E G R I N E , A G A T A G R U Z A ,
N E E L I M A K R I S H N A N , A N D P A W A N K U M A R G U P T A

Transient execution attack methods and their mitigations have been
subject to much scrutiny in recent years. While new hardware plat-
form designs are built to mitigate these methods, existing systems

may need to implement microcode or software mitigations. But due to the
complexity and variety of these methods, system administrators may wonder
what, when, and how to mitigate their systems. We examine common mitiga-
tion approaches for the Microarchitectural Data Sampling (MDS) and Trans-
actional Asynchronous Abort (TAA) methods, how these mitigations help
prevent attackers from leaking data, how they work to prevent attackers from
leaking data, and how sysadmins can configure the mitigations depending on
the needs of their environment.

Hardware Vulnerabilities and Transient Execution Methods
In recent years, researchers have demonstrated a novel set of methods known as transient
execution attacks (TEA, formerly termed speculative execution side channel), which target
some of the hardware designs introduced in many modern processors, in particular specula-
tive execution. The leading researchers have detailed several variants of this new class of
methods that target different hardware components and instructions that execute transiently
under various conditions. The hardware industry has responded by issuing microcode updates
for affected platforms, developing software techniques to mitigate affected instructions,
and changing the designs of new processors. These efforts help ensure that by the time new
variants are disclosed, users can protect their systems against potential implementations of
these methods. This is a common process that the industry has used to mitigate other hardware
issues and errata in the past [1].

Demystifying Microcode
Hardware manufacturers have been using microcode (μcode) since the mid-1990s, among
other things to fix bugs found on existing processors. μcode is a way to modify the behavior
of hardware without changing the silicon itself by changing how the CPU translates instruc-
tions into micro-operations (μops). For example, when a CPU executes x86 instructions,
parts of the CPU decode each instruction into a sequence of machine-readable μops that
defines what the instruction does. Microcode updates allow hardware manufacturers to
modify how particular instructions translate into μops, thereby changing the instruction’s
behavior.

Software Stack
As seen in Figure 1, there are many different elements in the software stack. Depending on
the issue, different components of this stack might change to accommodate new optimiza-
tion, hardware functionality or to complement μcode changes with additional features. For
example:

Antonio is a software engineer
at Intel where he focuses on
security software mitigations. He
holds a PhD in computer science
and has worked in different

roles in the areas of performance, computer
architecture, parallel programming, and security
for the last 15 years.
antonio.gomez.iglesias@intel.com

Evan Peregrine is a software
ecosystem engineer at Intel,
specializing in long form
technical documentation.
He contributed to the ACPI

specification, Clear Linux, 01.org, and
Zephyr Project before joining Intel’s software
security communications team in 2018.
evan.c.peregrine@intel.com

Agata Gruza has been at Intel
for over five years working on
performance optimizations
of big-data frameworks like
Cassandra, Spark, and Hadoop

for Intel Architecture. Currently, she is a lead
performance engineer and focuses on Linux
kernel software mitigation. Agata is a Google
(Android Developer) and Facebook AI (Secure
and Private AI) scholarship recipient. She
holds double MS in computer science and
mathematics from Montana State University
and The John Paul II Catholic University of
Lublin, Poland, respectively. She is an open
source contributor and a founder of Women in
Big Data NorthWest Chapter. In her free time
Agata enjoys hiking and outdoor activities.
agata.gruza@intel.com

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  43

SRE
Practical Mitigation Guidance for Hardware Vulnerabilities

 3 The operating system (OS) can include methods that make it more difficult for potential
malicious actors to target other processes, other users, or the OS itself.
 3 Over the years, we have seen how some of these methods target some popular libraries,
particularly cryptographic libraries. Popular and well-maintained cryptographic libraries are
regularly updated to include programming techniques that make these attacks more difficult.
For example, constant-time implementations of crypto algorithms increase their protection
against timing methods.
 3 In certain cases, compilers have introduced changes so that the code generated includes
constructs to increase the protection against potential malicious actors. For example, we saw
how compilers like gcc included options to protect code against certain Spectre attacks [2].

But the list of software mitigations for these methods does not end here. Software developers
regularly update virtual machine managers, web browsers, libraries, tools, and middleware to
help mitigate issues originating in hardware [3].

Characteristics of Transient Execution Methods
We focus here on the recently disclosed Microarchitectural Data Sampling (MDS) [4] and
Transactional Asynchronous Abort (TAA) [5] methods. In these transient execution attacks
(TEA), both the victim (process, kernel, etc.) and the malicious actor must share some physi-
cal computing resources. This means that these methods have several inherent restrictions:

 3 Remote attacks are difficult or not possible. A malicious actor will typically require having
local access to a system.
 3 Any data is accessed in read-only mode. Malicious actors cannot change or roll back a
system’s data.
 3 There is no direct privilege escalation. A malicious process cannot give itself root access.
 3 In some methods, attackers have little or no control over what data they can access. Sophisti-
cated analysis techniques are required to parse secret data out of system noise.
 3 Both victim and attacker must run on the same physical core.

Neelima Krishnan is a software
engineer at Intel. She leads
the validation of the security
mitigations in the Linux kernel
with a special focus on hardware

vulnerabilities. neelima.krishnan@intel.com

Pawan Gupta is a software
engineer at Intel working
on software mitigations for
hardware vulnerabilities.
He is the author of the TSX

Asynchronous Abort mitigation in the Linux
kernel. His areas of interest are embedded
systems, kernel programming, device drivers,
micro-controllers, and real-time operating
systems. pawan.kumar.gupta@intel.com

Figure 1: Modern software stack

44    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SRE
Practical Mitigation Guidance for Hardware Vulnerabilities

In addition to these limitations, most TEA share the following
procedure:

1.	 Access target data
2.	 Send data through a covert channel
3.	 Receive data from the covert channel
4.	 Analyze the data for secrets

To demonstrate, consider the following typical scenario: a mali-
cious actor wishes to extract data from a public cloud system
where multiple users can access the same machine and run any
type of code. In this type of system, an orchestrator or another
piece of software will assign a user to a machine according to the
user’s specified requirements, and the user has little to no control
over which machine they are assigned to. The assigned system
will typically also be running other users or processes that have
been allocated in the same manner, which means a malicious
actor has little to no control over which users or processes they
can attack. Because these other users and processes can run
arbitrary code, a malicious actor needs to work really hard to find
a way to force a victim to run a workload that may be of interest
to the attacker, and the attacker must also devise a way to infer
what code the victim is running. Finally, if the attacker wishes to
implement a data sampling method, the malicious process must
share those key computational resources for an extended period
of time with the victim process to establish certain data access
patterns that the attacker can analyze to infer the data that the
victim process was using.

Design and Implementation of Mitigations
While there is not a single recipe to follow when mitigating these
issues, this section describes the general process used to mitigate
MDS and TAA. The mitigations for both issues require changes
at the μcode level and the software level and, therefore, are good
case studies of the mitigation process for TEA.

Step 1: New Microcode
Let’s review an example of how μcode defines how instructions
translate into μops executed by the CPU. The MDS and TAA
methods try to leak stale data from small microarchitectural
buffers inside the CPU, and the mitigations for these methods
consist of clearing the affected buffers before their contents
can be sent through a covert channel. This raises the question
of when and how those buffers are flushed. We cannot clear the
buffers in a disorganized fashion, since that could have undesir-
able effects, such as cross-thread attacks, stalls, or performance
implications. One option we do have is to provide a mechanism so
software elements higher up in the stack (such as the OS or appli-
cations) can decide when to clear the buffers. For that reason,
Intel redefined an existing instruction (VERW, Verify Segment for
Writing) that was deprecated and not in use. On affected sys-
tems, after the μcode update, VERW can be used to flush and clear
the content of the buffers affected by MDS/TAA.

Step 2: How to Invoke the New Functionality Provided
by the Microcode (if Required)
Now we have a tool (VERW) that software can invoke to clear those
buffers. An example of a C function that calls this instruction in
the Linux kernel is shown below:

static inline void mds_clear_cpu_buffers(void) {
 static const u16 ds = __KERNEL_DS;
 asm volatile(“verw %[ds]” : : [ds] “m” (ds) : “cc”);
}

Listing 1: Linux kernel function to invoke VERW

We mentioned the Linux kernel since the OS invokes this func-
tionality. The OS is the only component of the software stack that
can protect different users from user-to-user attacks, as well
as protect the kernel itself from potential attacks originating in
userspace.

Step 3: Implementing the New Functionality
Now that we have a function like mds_clear_cpu_buffers(), the
next step is to identify the right places to clear the buffers. The
most appropriate location to flush the buffers is during a ring
transition. Ring transitions occur when the system changes the
privilege level at which code can execute. For example, if a user
application performs a system call to the kernel, a ring transi-
tion from ring 3 (userspace) to ring 0 (kernel space) occurs. To
mitigate these issues, the VERW instruction is invoked before the
system call returns from kernel space back to userspace.

As another example, VERW should be invoked if there is a context
switch between different processes, regardless of the owner of
those processes. This prevents attacks on systems that disable
simultaneous multithreading (SMT), since only one process
can run on a physical core at any given time, and the buffers are
cleared before another process runs in the same core.

Step 4: Options to Configure the Mitigation and Report
Mitigation Status
The last step when it comes to reducing the severity of these
security issues is to provide mitigation options so that those with
the right privileges can configure them at boot time, as well as a
mechanism to detect the status of those mitigations. Sysadmins
can control mitigations from the kernel command line. A full list
of available options based on the hardware vulnerability is avail-
able at kernel.org [6]. In most cases, because transient execution
attacks require a malicious actor to be able to execute locally on
a system, machines that run only known, controlled, and trusted
software may be very difficult or even impossible to target with
these methods. Also, due to the nature of the code and users they
support, certain systems might not be the target of transient
execution attacks and may not need the mitigations. For example,
if after a detailed risk analysis where the usage of the system and

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  45

SRE
Practical Mitigation Guidance for Hardware Vulnerabilities

the characteristics of TEA are considered, the sysadmin decides
that the risk of TEA is very low, they may choose to disable the
mitigations.

In cases where all the userspace applications are trusted and
don’t execute untrusted code, then mitigations can be disabled.
System administrators may want to disable the mitigations on
such systems, as different mitigation options can have perfor-
mance implications. In other cases, when programs have secret
data that needs to be protected (for example, crypto keys), the
kernel should provide a full mitigation for the same issue. Also,
other components of the software stack, like compilers, might
also put in place options to enable or disable the mitigations.
System administrators should evaluate their environment and
workloads and make an educated decision whether security
mitigations are needed.

Sysadmins can use simple tools to check if a given system is miti-
gated against certain CPU vulnerabilities. In Linux, hardware
security issues are associated with a report log, which resides in
sysfs. The output of sysfs indicates if a system is affected by a
specific method, and whether the system is mitigated or pres-
ently vulnerable.

To reflect recently disclosed vulnerabilities the OS needs to be
up-to-date, either by updating the existing kernel or upgrad-
ing to the most current one. Updating the OS might seem like a
daunting task that takes a significant amount of time. To ease
the burden, security researchers created system vulnerability
checkers, such as a tool for Linux and BSD available at GitHub [7]
to detect whether a given machine is affected by TEA methods.
Those tools provide detailed information about hardware sup-
port for mitigation techniques if a system is vulnerable to TEA,
whether vulnerable systems can be mitigated with a μcode or OS
update, or if software changes are required.

Other Techniques for Preventing Attacks
We have seen how these methods take advantage of hardware
resources that are shared among different processes. It is pos-
sible to limit this resource sharing and thereby reduce the attack
vector, with some caveats.

The first challenge here is system load. Some systems are
configured to run many more processes at any given time than
currently available physical cores on the system. In these cases,
resource sharing is unavoidable. However, on systems where the
total number of user processes doesn’t exceed the total number
of physical cores, it is possible to schedule processes to always
run on the same physical core and never share that core with
other processes, thereby reducing the chances for a malicious
actor to implement one of these methods. Linux tools like
numactl and taskset can be used to set the affinity of processes

and implement this type of process scheduling. Also, cgroups can
be an alternative to create process isolation.

The open source community is working on a Linux kernel sched
uling technique to implement a similar solution. This technique,
called core scheduler, allows system administrators to tag
specific processes. Processes sharing a tag can run simultane-
ously on the same physical core (when SMT is enabled), while
processes with different tags are prevented from running con
currently on the same physical core. When one process stops
running, either because the process is finished or because the
OS schedules a different process, the hardware resources (such
as buffers and branch predictors) are cleared before another
process can use them. Other operating systems and virtualiza-
tion tools might also implement similar techniques.

The second caveat is interruptions. By default, interrupts can run
on any core of the system as decided by the OS. So, if that is the
case, then interrupts might be a target of a potential malicious
actor. Particularly in systems with SMT on, a malicious actor
may be able to target the data accessed by the interrupt while
this interrupt is executing on the same core. However, system
administrators can now choose to specify cores in the system to
handle all system interrupts, preventing any user processes from
running on those cores [8]. System administrators should care-
fully consider the implications of this approach (how it affects
the overall throughput of the system, the number of system calls
that are normally handled, etc.).

Conclusion
While transient execution methods have affected many modern
CPUs, the industry has collaborated to ensure that mitigations
for these methods are available by the public disclosure date.
This requires understanding the implications of these methods
and the optimum solution for mitigation. Since new hardware
includes mitigations against these methods, an approach might
be to update the hardware. However, because changing hardware
takes time, is costly and challenging, other alternatives (like
updating microcode and making changes to the software stack)
are needed to mitigate existing vulnerabilities. It’s crucial for
system administrators to understand that the technical mitiga-
tions are just one component of the security process. Enabling
sysadmins to choose what mitigation approach works best for
their environment and workloads is key. Providing alternatives,
explaining how the different mitigation methods work, and out-
lining the factors to be considered for each mitigation approach,
all help enable system administrators to choose the most appro-
priate actions.

46    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SRE
Practical Mitigation Guidance for Hardware Vulnerabilities

References
[1] Microsoft, “Host Microcode Update for Intel Processors to
Improve the Reliability of Windows Server”: https://support​
.microsoft.com/en-us/help/2970215/host-microcode-update​
-for-intel-processors-to-improve-the-reliability.

[2] GCC 7.3 release notes: https://lwn.net/Articles/745385/.

[3] Intel, “Deep Dive: Managed Runtime Speculative Execution
Side Channel Mitigations”: https://software.intel.com/security​
-software-guidance/insights/deep-dive-managed-runtime​
-speculative-execution-side-channel-mitigations.

[4] Intel, “Microarchitectural Data Sampling”: https://software​
.intel.com/security-software-guidance/software-guidance​
/microarchitectural-data-sampling.

[5] Intel, “Intel Transactional Synchronization Extensions
Asynchronous Abort”: https://software.intel.com/security​
-software-guidance/software-guidance/intel-transactional​
-synchronization-extensions-intel-tsx-asynchronous-abort.

[6] Linux Kernel, “Hardware Vulnerabilities”: https://www​
.kernel.org/doc/html/latest/admin-guide/hw-vuln/.

[7] Spectre & Meltdown checker: https://github.com/speed47​
/spectre-meltdown-checker.

[8] Linux Kernel, “SMP IRQ Affinity”: https://www.kernel.org​
/doc/Documentation/IRQ-affinity.txt.

SREcon Conversations are short, interactive, online discussions about
Site Reliability Engineering, hosted on Zoom. SREcon Conversations
maintain and celebrate the values, goals, and culture of SREcon. One
conversation will be held on each day of each event. Register today!

www.usenix.org/srecon/conversations

September 7–9, 2020

October 27–29, 2020

https://support.microsoft.com/en-us/help/2970215/host-microcode-update-for-intel-processors-to-improve-the-reliability
https://support.microsoft.com/en-us/help/2970215/host-microcode-update-for-intel-processors-to-improve-the-reliability
https://support.microsoft.com/en-us/help/2970215/host-microcode-update-for-intel-processors-to-improve-the-reliability
https://lwn.net/Articles/745385/
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/software-guidance/microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/software-guidance/microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/software-guidance/microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/software-guidance/intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/software-guidance/intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/software-guidance/intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/
https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker
https://www.kernel.org/doc/Documentation/IRQ-affinity.txt
https://www.kernel.org/doc/Documentation/IRQ-affinity.txt

