
www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  47

SRE

Using OpenTrace to Troubleshoot
DB Performance
A N A T O L Y M I K H A Y L O V

Y ou cannot fix any of the problems you cannot see. I will outline how
the Zendesk SRE team monitors database performance and how
you can apply it to your own observability challenges. Our approach

considers low-level database performance data, proxy logs, and application
performance monitoring (APM) in order to expose the meaningful context
behind an individual slow SQL query.

Database performance is central to users’ experiences, so having excellent observability
is critically important. Many of the observability tools that we build or buy are focused on
ensuring optimal customer experience, or determining the extent of customer impact during
outages and service degradations. These are challenges that many in the industry experience,
and I hope that the work I have done at Zendesk will help you build your own observability
dashboards. This approach leads to improved back-end performance and happier customers.

Ideally, what we want is a way to track just the single user request that resulted in bad perfor-
mance. Imagine being able to complete an incident’s root cause analysis that takes seconds
rather than minutes or hours. API traffic from a large set of customers can not only be traced
to relevant database internal performance metrics at a given time, but also be visualized
and presented in a readable format. Why is a given SQL query fast in one case and slow in
another? When does database performance degradation lead to an outage and when does it
not? Is the query execution plan alone enough to understand and address performance issues?

Over the past year we substantially improved database observability, and this improved over-
all stability and reliability of the system. We built tools to help engineers see and understand
performance issues quicker. This has also helped to prevent outages.

I will go through key elements of the observability stack we have built to create meaning-
ful context around requests, linking SQL queries to APM distributed traces and even proxy
log events. In this context the proxy event is the entry point, the time elapsed between when
an individual request enters the system and once the response is ready to be sent back. SQL
query analysis, proxy log event, and APM tracing are the three key elements. To support and
enhance their integration we collect database internal information and link that to the rest of
the system. We also collect data from information schema to have information about data-set
size, which is very important for profiling SQL queries and understanding how data-set size
impacts the overall performance. Each individual element provides information, and their
integration helps to traverse from one to another using Open Tracing.

OpenTracing
OpenTracing is a vendor-neutral, cross-language standard for tracing distributed applica-
tions. Datadog offers OpenTracing implementations for many APM tracers, including the
Ruby on Rails version we use for demo purposes. According to the official documentation
(https://opentracing.io/docs/overview/spans/):

Anatoly is a keen enthusiast in
observability and performance
troubleshooting. He works as a
Staff SRE engineer at Zendesk
in Dublin, Ireland, where he is

part of a global team that builds and maintains
next generation observability tools for dozens
of high-traffic microservices/databases. He
contributes to the Zendesk Engineering blog.
He is also a runner, an avid hiker, and nature
photographer. Before Zendesk, Anatoly worked
as a DBA, DevOps and software engineer for
over 10 years. mikhailov.anatoly@gmail.com

48    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SRE
Using OpenTrace to Troubleshoot DB Performance

The span is the primary building block of a distributed
trace, representing an individual unit of work done in a
distributed system. Each component of the distributed
system contributes a span—a named, timed operation
representing a piece of the workf low. Spans can (and
generally do) contain References to other spans, which
allows multiple Spans to be assembled into one complete
Trace—a visualization of the life of a request as it moves
through a distributed system.

A trace_id is the unique identifier we propagate from one service
to another in order to keep the context. While it can be relatively
easy to connect APM application requests with a proxy log event,
it’s much more difficult to propagate a trace_id to other services
like the database process list; I will show how we use SQL com-
ments to do so. We can reuse this approach to connect a back-
ground cron task job with a relevant SQL query by generating
trace_id outside of the HTTP request life cycle. Any service that
communicates to a database can benefit by propagating the nec-
essary context with SQL query and tracing libraries that help to
abstract complexity and use higher level objects: span and trace.

Database Observability
According to High Performance MySQL (https://www​
.highperfmysql.com):

Performance is response time. We measure perform
ance by task and time, not by resource. Performance
optimization is the practice of reducing response time as
much as possible.

MySQL Performance Schema provides a way to inspect database
performance and find out why a SQL query runtime takes longer.
Or saying it another way: why an SQL query is slow. This level
of instrumentation is critical to address performance issues.
MySQL 5.6+ supports the sys schema (https://www.percona​
.com/blog/2014/11/20/sys-schema-mysql-5-6-5-7/), which is a
set of objects that interprets data collected by the Performance
Schema in a manageable format. I will describe how we take
snapshots of relevant queries from the schema with 15-second
resolution and learn how to use tracing to connect SQL queries,
including trace_id, with the application traces and proxy logs.
This tool will not only give you a great instrument to jump from
slow query to proxy logs but will also filter out HTTP requests
with high database runtime, and so we will focus on these.

According to High Performance MySQL:

[A] common mistake is to observe a slow query, and then
look at the whole server’s behavior to try to find what’s
wrong. If the query is slow, then it’s best to measure the
query, not the whole server….Because of Amdahl’s law, a
query that consumes only 5% of total response time can
contribute only 5% to overall speedup, no matter how
much faster you make it.

According to Site Reliability Engineering (https://landing.google​
.com/sre/sre-book/chapters/monitoring-distributed-systems/):

Your monitoring system should address two questions:
what’s broken, and why? The “what’s broken” indicates
the symptom; the “why” indicates a (possibly inter
mediate) cause….When pages occur too frequently,
employees second-guess, skim, or even ignore incoming
alerts, sometimes even ignoring a “real” page that’s
masked by the noise.

“What” and “Why” have different meanings for DBA and for SRE.

 3 Relational storage and SRE observability worlds are somewhat
disconnected. We have to close the gap between a slow HTTP
request and what the DB was doing at that very moment.
 3 SRE teams view high-volume traffic that often has high cardi-
nality. High-cardinality monitoring tools allow connecting with
APM/logs.
 3 DBA teams focus on database performance and the portion of
inefficient SQL queries that make it to the DB slow query log.

Improving Observability with Database Signal
Four golden signals (saturation, latency, traffic, errors) make up a
well-known approach in web service monitoring, but how can we
apply these signals to database performance? Is there anything
unique about database performance?

According to High Performance MySQL:

Threads_running tends to be very sensitive to problems,
but pretty stable when nothing is wrong. A spike of
unusual thread states in SHOW PROCESSLIST is
another good indicator….If everything on the server is
suffering, and then everything is okay again, then any
given query that’s slow isn’t likely to be the problem….
Pileups typically result in a sudden drop of completions,
until the culprit finishes and releases the resource that’s
blocking the other queries. The other queries will then
complete.

We will follow the advice from this book to pick the most impor-
tant performance metrics:

The essence of this technique is to capture…[it] at high
frequency…and when the problem manifests, look for
spikes or notches in counters such as Threads_running,
Threads_connected, Questions and Queries.

Each of the key metrics carries the signal. For this purpose we
choose very low thresholds as service level indicators: seven
threads connected, five threads running, DB runtime below two
seconds and queries/second (QPS) not higher than 20. When the
threshold is exceeded it indicates a signal (1); otherwise, there’s
absence of the signal (0). We will use the bitmask OR operation to
calculate the resulting database signal (Table 1).

https://www.highperfmysql.com
https://www.highperfmysql.com
https://www.percona.com/blog/2014/11/20/sys-schema-mysql-5-6-5-7/
https://www.percona.com/blog/2014/11/20/sys-schema-mysql-5-6-5-7/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  49

SRE
Using OpenTrace to Troubleshoot DB Performance

Each individual SQL query will be instrumented with an SQL
comment that contains a unique identifier trace_id—for example:

SELECT * from users /* 1541859401495831 */

For visualization purpose we use Datadog and its APM (https://​
docs.datadoghq.com/tracing/connect_logs_and_traces/Logs​
_integration):

The correlation between Datadog APM and Datadog
Log Management is improved by the injection of trace
IDs, span IDs, env, service, and version as attributes in
your logs. With these fields you can find the exact logs
associated with a specific service and version, or all logs
correlated to an observed trace (https://docs.datadoghq​
.com/tracing/visualization/#trace).

Full Circle Observability
Disclaimer: code snippets shared below are open source (MIT
license) and are not used at Zendesk but are created exclusively
for this article for the purpose of illustration.

A tracing library automatically generates a trace_id on the appli-
cation side. When the trace_id is generated we propagate context
via the HTTP header to the downstream and upstream depen-
dencies, so when the two services communicate to each other, the
HTTP header X-Trace-ID is the key element needed to bring the
context up the stack, from the application to the proxy layer (see
Figure 1). In the Ruby on Rails application, the simplified version
of the middleware looks as follows:

class DdtraceMiddleware
 def call(env)
 result = @app.call(env)
 result[1]['X-Trace-Id']
 Datadog.tracer.active_span.trace_
id.to_s
 result
 end
end

Then the trace_id can be part of Nginx proxy logs, application
log, all dependent microservices and external services that were
called to serve the original requests. For example, the Nginx
access log may appear as follows:

log_format json '{"dd":{"trace_id":"$upstream_http_x_
trace_id"}}'

We can bring more information from the application up to the
proxy layer, store it in access_log for observability purposes, and
then remove the service information from the HTTP response.
For example, if we collect the information about DB runtime,
connected and running threads, as well as QPS and calculated
Database signal, then the proxy configuration will look as follows:

log_format json '{'
 '"dd":{'
 '"trace_id":"$upstream_http_x_trace_id"'
 '},'
 '"http":{'
 '"performance":{'
 '"queueing_delay":$upstream_http_x_queueing_delay_
digits,'
 '"total_runtime":$upstream_http_x_total_runtime_
digits,'
 '"db_runtime":$upstream_http_x_db_runtime_digits,'
 '"db_signal":$upstream_http_x_db_signal_digits,'
 '"db_threads_running":
 $upstream_http_x_db_threads_running_digits,'
 '"db_threads_connected":
 $upstream_http_x_db_threads_connected_
digits,'
 '"db_qps":$upstream_http_x_db_qps_digits'
 '}'
 '}'
'}';

Database signal calculation can be another middleware layer
with the following code:

def get_db_signal
 db_threads_connected_slo \
 = Thread.current[:db_threads_connected] > 7
 db_threads_running_slo \
 = Thread.current[:db_threads_running] > 4
 db_runtime_slo \
 = Thread.current[:db_runtime] > 2
 db_qps_slo \
 = Thread.current[:db_qps] > 20

 db_threads_connected_bit = db_threads_connected_slo ? 1 :
0

Bit Signal SLI

0001 Threads connected 7 sec

0010 Threads running 5 sec

0100 Database runtime 2 sec

1000 Database queries per second 20

Table 1: Bitmasks for signaling exceeded SLIs

Figure 1: The trace_id gets added by the application and pushed back
upstream to the web proxy and downstream to the database.

https://docs.datadoghq.com/tracing/connect_logs_and_traces/Logs_integration
https://docs.datadoghq.com/tracing/connect_logs_and_traces/Logs_integration
https://docs.datadoghq.com/tracing/connect_logs_and_traces/Logs_integration
https://docs.datadoghq.com/tracing/visualization/#trace
https://docs.datadoghq.com/tracing/visualization/#trace
https://docs.datadoghq.com/tracing/visualization/#trace

50    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

SRE
Using OpenTrace to Troubleshoot DB Performance

 db_threads_running_bit = db_threads_running_slo ? 2 : 0
 db_runtime_bit = db_runtime_slo ? 4 : 0
 db_qps_bit = db_qps_slo ? 8 : 0

 (db_threads_connected_bit | db_threads_running_bit \
 | db_runtime_bit | db_qps_bit).to_s
end

Both the middleware layers and enhanced proxy log configura-
tion help to traverse and debug slow SQL queries in either direc-
tion: from proxy to the database process list data and also from
process list up to the proxy log. Figure 2 shows a communication
between an asynchronous process and the database to collect
performance information. Step 1 polls the sys schema process
list, extracts the individual SQL query, parses the SQL comment
with trace_id, and constructs the JSON event with the dd.trace_
id identifier. This is a very important step to connect asynchro-
nous data collection with request/response events later on and in
being able to create context around slow SQL queries.

Process list aggregation can be done via a bash script:

 function process_list_json() {
 trace_id=$(echo "$1" |grep -Eo '/* [0-9]{16,20} */' \
 | awk '{print $2}')

 if [-z "$trace_id"]
 then
 echo "{\"mysql\": \"process_list\", \"process_list\":\
$1}"
 else
 echo "{\"mysql\": \"process_list\", \"process_list\":\
$1, \
 \"dd\": {\"trace_id\": ${trace_id}}}"
 fi
 }

 function process_list() {
 /usr/bin/mysql -h127.0.0.1 -uroot -s -r -e "SELECT
 JSON_OBJECT(
 'thd_id', thd_id,
 'conn_id', conn_id,
 'command', command,
 'state', state,

 'current_statement', current_statement,
 'statement_latency', statement_latency / 1000,
 'progress', progress,
 'lock_latency', lock_latency / 1000,
 'rows_examined', rows_examined,
 'rows_sent', rows_sent,
 'rows_affected', rows_affected,
 'tmp_tables', tmp_tables,
 'tmp_disk_tables', tmp_disk_tables,
 'full_scan', full_scan,
 'last_statement', last_statement,
 'last_statement_latency', last_statement_latency /
1000
)
 FROM sys.x\$processlist
 WHERE pid IS NOT NULL
 AND db = 'db'
 LIMIT 25;"
 }

while true; do
 process_list | while read -r item; do
 process_list_json "$item" "$threads" > /proc/1/fd/1
 done
 sleep 1;
 done

This script contains two key functions: process_list() to collect
SQL queries, and process_list_json() to extract trace_id from
the SQL comment; it also contains a loop to keep these two func-
tions running once per minute. This script is running in a docker
container; output gets redirected to STDOUT and is collected by
the OpenTracing agent: in this case, the datadog-agent.

An OpenTracing agent receives an APM event from the applica-
tion and a log event from the proxy and JSON log events. Log
events get sent to the log intake endpoint separately. Note: Data
dog is used for illustration purposes, but database performance
monitoring can be done by any alternative OpenTracing provider.

Figure 2: A second way of using the trace_id is for the database connector
to query sys schema.

Figure 3: Full observability circle. The unique identifier trace_id gets
propagated from the application to database and proxy logs.

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  51

SRE
Using OpenTrace to Troubleshoot DB Performance

Conclusion
With comprehensive instrumentation and distributed tracing,
we created an observability basis to detect database perfor-
mance degradation and have the necessary context for further
investigation. A database signal can help to address the following
questions:

 3 How much time a database spent processing an SQL query for a
given HTTP request
 3 How saturated the database resources have been during the
time of request
 3 Where the database spent most of the time processing database
requests
 3 How many customers are impacted and what their user experi-
ence was

DECEMBER 7–9, 2020 • VIRTUAL EVENT

www.usenix.org/srecon20americas

The full program and registration
will be available soon.

PROGR AM CO-CHAIRS

Mike Rembetsy
Bloomberg

Nora Jones
Jeli.io

You can find more information with related visualizations at
https://medium.com/@unknown_runner.

