
54  FA L L 2020 VO L . 45 , N O. 3 www.usenix.org

COLUMNS

Systems Notebook
Socially Distant Projects

C O R Y L U E N I N G H O E N E R

I don’t know about the rest of you, but for me the last several months have
been really weird. At the start of March, my daily routine stopped being
one that involved getting up, riding my bike to my office, talking to my

coworkers, and hopefully getting some technical work done. Instead, I started
walking into my garage every morning, sitting at my workbench-become-desk,
and interacting with all of my coworkers via WebEx, Skype, BlueJeans, Zoom,
and just about any other online meeting package that’s ever been invented.
While being socially distant has resulted in fewer interruptions, and I feel
like I have gotten a lot more done each day, it’s also made it clear that projects
frequently require socialization to make progress. It turns out that most tech-
nical projects benefit from some level of social closeness.

Getting Stuff Done, Together
Let’s take a look at a project I have been recently working on, one that started back in the days
when we could sit closer than two meters apart from each other. This project, which is still
ongoing, is a long-term effort to replace the aging software stack we use to manage many of our
scientific computing clusters with something more modern. To say the system management
stack that we started with was outdated would be an understatement: one of the main tools we
have been using for a long time last had a public release in 2012, and the domain name of the
company that was founded to support it was recently for sale—$2999 (CHEAP) and it could
be yours! But the stack, which also included Cfengine 2 and SVN, was solid and well known on
our production teams, so despite its age making it a liability, there was reluctance to change.

Anybody who has worked in computing long enough has faced the same decision we had to
make around a year ago: do we continue dragging our current software stack forward, hoping
that it can continue to serve us for a few more generations of systems? Or do we start the long
process of updating, knowing that we will face unexpected challenges and potentially intro-
duce instability during the process? While we have faced this question in the past and have
always decided to wait a little longer, this time we decided to attack it head on.

Now, to be honest, our environment isn’t that complex, and this column isn’t going to be about
the technical details of our solution. I will mention that it involves Git, Ansible, and a yet-to-
be-determined provisioning tool, but the work we are doing with them is pretty standard.
Standard enough that a motivated team of three or four people could probably have replaced
most of the aged components with about six months of solid work. But if those four people
had hidden away in their offices for those six months, only eating cheese and pizza that we
slid under their doors for them, and they emerged at the end of their metamorphosis with a
beautiful new software stack that was perfect in every way, the project would have been a
total failure. The problem we had was partly a technical one, but also a social one. We needed
to move an entire organization of technical people from one software stack to another, and
we needed to do it in a way that respected the fact that some teams wanted to be involved in
the development, but a lot of the teams just wanted to be the end users of a stable product.

Cory Lueninghoener makes
big scientific computers do big
scientific things, mainly looking
at automation, scalability, and
large-scale system design. If you

don’t see him hanging out with the LISA and
SREcon crowd, he’s probably out exploring the
mountains of northern New Mexico.
cluening@gmail.com

www.usenix.org FA L L 2020 VO L . 45 , N O. 3 55

COLUMNS
Systems Notebook: Socially Distant Projects

Cha-cha-cha-cha-changes!
How do you introduce a big change to a big organization? It
involves transparency, iteration, and building trust. It involves
being social. This starts out all the way at the start of the project,
when you need to sell the idea to your immediate coworkers, and
continues through selling that same idea to members of other
teams, managers, program managers, and everybody else who
might be affected by the change. It involves sharing your code,
whether that is actual code in Go, Python, or some other lan-
guage, or it is a set of YAML configuration files. And it involves
two-way conversations: presenting your ideas and your code for
review, and accepting feedback that others give in return.

We used that recipe to great effect with this project, and we
started out small in the beginning. Our initial social circle was
just a few of us who had been thinking about the project for a long
time, and we started by merging our ideas into an initial project
plan. But instead of acting on the plan, creating a new system
management stack, and then trying to get others on board, we
started out by talking about our plan with our managers and
 fellow tech leads to make sure we wouldn’t create something
that would be dead on arrival. Meanwhile, we started a proof
of concept where we could try out ideas and incorporate feed-
back from our colleagues, developing it in an open way that built
understanding and trust. Once we knew we had the backing of
a sufficient number of stakeholders, we built a small develop-
ment team with motivated members from each of the teams that
needed input, and we started working on the real project.

If you just read that and thought, “Wow, that must have taken
a while,” then you are totally correct. But by doing a lot of the
socialization work up front, we were saving time along the way
and preventing failure at the end. As we started the technical
work on the project, we knew we needed to find ways to keep the
project collaborative. Since the development team was made
up of representatives from a variety of other teams, we needed
to build ourselves up as a meta-team that could work on this
together. How did we do that?

Let’s Get Together
To start, we had meetings. No, really! A well-managed meeting
is a very effective way to share information with multiple people
at once. While we were still able to meet in person, we met once
a week as a team. Around once a month, we used those meetings
as “broadcast” meetings—making announcements, working
through administrative details, and generally keeping everybody
on the team up-to-date. The rest of the meetings were used for
social coding activities: group code reviews, giving presentations
on recent work, and triaging development tasks. Two impor-
tant aspects that made these meetings successful were having
agendas and finishing on time. Both of these aspects are based on

the same idea: respect others’ time. By ensuring we had agendas
(and that we stuck to them!), we made it easier for team members
to prioritize their time and be ready for the topics that would be
discussed that day. By finishing on time, we kept our discussions
bounded and didn’t steal time from other work.

This model hit a snag in the middle of March, when the world
changed and we all started working remotely. No longer were we
able to follow our normal routine of getting together weekly to
talk about the details of an Ansible deployment. Since our meet-
ings were designed around in-person interaction, we decided to
cancel them until things got better. However, as of late May, we
recognized that we would likely be working under social distanc-
ing restrictions for a longer term than initially anticipated, and
as I am writing this (June 2020) we are starting to spin the proj-
ect back up. Luckily, we had another way to work collaboratively
at a distance waiting in the wings.

Enter GitLab
Very early in the process, we had started hosting our work on a
local GitLab instance. While our existing system management
stack was backed by SVN and we used a separate issue track-
ing system for our day-to-day work, we recognized early on that
adopting an integrated repository browser, issue system, and
code review system would provide a new level of insight into our
initial coding project as well as the changes that were happening
in our systems.

Git has spawned a variety of collaboration tools, from full-
featured services like GitHub to locally hosted tools like Gitea.
In between is GitLab, which can be used as a remote service or
hosted locally. All of these tools promote working on projects
in the open, and all of them follow the same general concept
of a “merge request” workflow: to make a change, you create a
branch, make your changes, push the branch up for review, and
then merge the results into the master code branch. These tools
provide tight integration with an internal issue tracking system
and a web-based front end, providing a great deal of transpar-
ency into a team’s development process. In our case, GitLab most
closely met our needs, and we enthusiastically embraced its use.

As we have started spinning this project back up, we have begun
using GitLab’s integrated features in earnest. Our weekly in-
person meetings have moved online, and we now use GitLab as
the main driver of our meetings. Whereas we had previously used
a separate meeting agenda to decide on discussion topics, we now
use our existing tasks and issues to drive the meetings. While we
have replaced the meeting room projector with a shared WebEx
screen, more people tend to interact with GitLab on their laptops
during the meetings than before. The tooling has stayed the same,
but the way we use it to interact with our code and with each
other has changed to meet our new needs.

56  FA L L 2020 VO L . 45 , N O. 3 www.usenix.org

COLUMNS
Systems Notebook: Socially Distant Projects

But Wait, There’s More!
One final note about the benefits of making a project that is
strong both technically and socially: an unexpected outcome of
this effort was finding other teams that were starting down the
same path on similar projects at about the same time we were
doing this. We had originally set out to build a repository that
could manage scientific computing clusters, but as we socialized
our plans, the core team working on this project started picking
up members of other teams who wanted to build on our work. We
took this into stride as a group, and used the opportunity to make
our work more flexible and accessible to more teams.

To do this, we split our Ansible repository into two parts. Each
individual team has their own Ansible inventory directory, which
contains their team-specific host definitions, variable defini-
tions, and playbooks. Meanwhile, all teams share an Ansible
roles directory, which contains reusable building blocks that
install and configure things like NTP, rsyslog, and authentica-
tion in a standard way across our environment. Had we done this
project in isolation, none of us would have recognized the utility
in splitting the repository out like this until it was much too late
to implement it. And by using GitLab as a central collaboration
point, we have a very social roles repository that multiple teams
can edit and review, but also the flexibility for each team to build
their own team-specific work on top of that.

And the Beat Goes on
So where are we currently with this project? As I mentioned at
the start, this is an ongoing project, and we are only partway
through its implementation. I’m happy we started the project out
socially, as it has benefited from that, especially when we had to
start doing it remotely. We’ve begun to start the project up again
after we paused it for a while, and as I am writing this, we’re
just beginning to see how the project will work using text chat,
WebEx sessions, and GitLab’s integrated tooling. So far, it is very
promising. It was a large and sudden change to our workflow, and
I don’t think it would have worked out as well had we not started
out with a social and collaborative approach to this project.

Being socially close despite being physically distant is important
beyond this time of isolating ourselves for the sake of society.
Most of the USENIX community spends some amount of time
working remotely with colleagues, whether they are employees of
the same company, salespeople who live in different cities, con-
tributors to open source projects, or any number of other people
we benefit from working with without sharing physical space.
And as we start migrating back to our normal office life, keeping
projects social will help keep them running smoothly, especially
when they involve large changes that we need to convince lots of
people to make.

XKCD xkcd.com

