
www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  57

COLUMNS

iVoyeur
BPF—Part Three

D A V E J O S E P H S E N

Dave Josephsen is a book author,
code developer, and monitoring
expert who works for Fastly.
His continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

It is a little known fact [1] that as pre-teens Romeo and Juliet, both by
nature predisposed to notions of impossible love and emo anti-parental
overreaction, independently happened upon and fell in love with Ovid’s

Metamorphoses, wherein is related the tale of the OG suicidal power couple,
Pyramus and Thisbe.

Neighbors, whose dwellings were built upon a common center wall in the lovely city of Babylon,
Pyramus and Thisbe were cruelly forced apart by their respective families, who shared not only
a foundation wall, but also a bitter long-running feud. So close, and yet so far; the phrase itself
might have been invented to literally describe their specific predicament, for although their love
burned so bright the gods took notice, they might as well have been separated by an ocean.

Until one day, a crack formed low in the basement wall that separated their dwellings. Each
noticing separately, and then by degrees stealing into the basement in the night to hear each
other whisper their love through the crack in the wall, and to sometimes pass messages and
precious tokens of love as opportunity allowed. Eventually they both stabbed themselves. A
lion was somehow involved—the precise details escape me, but in probably humanity’s
earliest example of negative media influence on youth [2], Romeo and Juliet followed in kind
some 1500 years later.

Anyway, I know exactly what you’re thinking. The basement wall is a textbook perfect meta-
phor for the memory-enforced separation of kernel space and userspace in monolithic kernel
architecture! I know, right? Each side yearning for and depending upon the other?! Each sharing
a common heartbeat but never an embrace! Doomed forever to content themselves with whis
pered secrets and messages passed through cracks in the wall forever holding them apart. Sigh.

Passing Messages
In my last article [3], we took a first look at the biolatency.py source code and dove into the
kernel source to get a basic understanding of the block I/O layer and what requests at that
layer of Linux look like. In this article, as promised, we’re going to talk about message passing
and the three mechanisms BPF gives us to whisper precious data through the wall between
kernel space and our userspace Python runtime. I’ll briefly cover all three, though the third
and final method is the one we really care about, as it’s the one used by biolatency itself.

The first method we have to send ourselves a message-in-a-bottle from kernel space is the
bpf_trace_printk() function. For an example of its use, consider the BCC tools’ one-liner
“Hello, World!” program [4]:

from bcc import BPF
BPF(text=’int kprobe__sys_clone(void *ctx) { bpf_trace_printk(“Hello, World!\\n”);
return 0; }’).trace_print()

The C portion of this program attaches to the sys_clone() system call and uses bpf_trace
_printk() to print the string “Hello, World!” to the system “common trace pipe” (/sys/kernel
/debug/tracing/trace_pipe) whenever a new process is created. On the Python side, we slurp
it from the pipe with the trace_print() method, which opens the file and prints whatever it
finds within [5].

58    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
iVoyeur: BPF—Part Three

This approach is straightforward and makes for easy one-liner
style tool development, but it has a few problems that make it
unusable for anything but light testing and one-off tools. Pri
marily, it’s called the “common” trace pipe because it’s shared by
every BPF filter that uses bpf_trace_printk().

Ignoring the other technical limitations for a moment, this mech-
anism doesn’t even work well with my diligently constructed
metaphor—more akin to shouting our messages out the window
than surreptitiously passing notes in the classroom; making
bpf_trace_printk() not just a technical but, more importantly, a
literary non-starter. I think you’ll agree, if Romeo and Juliet had
to depend on world-readable sockets for message passing, their
love would never have survived long enough to result in tragic
mutual suicide.

Obviously, to write tasteful trace programs, we’ll need a way
to get data from our probe without the pollution of a system-
common datapath.

Let’s therefore abandon printk and move on to the second means
of data-transfer from a kernel-side probe: BPF_PERF_OUTPUT().
This is a ring-buffer of shared memory that contains a pointer
to some data that you want to pass from kernel space into your
Python program. A proper piece of shared memory, safe from
prying eyes. Let’s take a look at how the C-side (kernel-side) code
uses BPF_PERF_OUTPUT(); this snippet is from the hello_perf
_output.py example in the BCC tools repo [6]:

// define output data structure in C
struct data_t {
 u32 pid;
 u64 ts;
 char comm[TASK_COMM_LEN];
};
BPF_PERF_OUTPUT(events);

int hello(struct pt_regs *ctx) {
 struct data_t data = {};

 data.pid = bpf_get_current_pid_tgid();
 data.ts = bpf_ktime_get_ns();
 bpf_get_current_comm(&data.comm, sizeof(data.comm));

 events.perf_submit(ctx, &data, sizeof(data));

 return 0;
}

Now this is more like it. At the top of this probe, we define data_t,
an arbitrary data structure whose contents are controlled by us.
This is the envelope we will press through the crack in the wall
between kernel and userspace. Its secret contents, completely our
discretion. In this example, we have three bits of info: the PID of
the process that triggered the probe (pid), the current system time
in nanoseconds (ts), and the name of the current process (comm).

Each of these three tantalizing intimacies is retrieved by a
bpf_get function and packed into an instance of data_t called,

unimaginatively, data. There is a small number of these helper-
functions [7] available in BPF to retrieve various pieces of con-
text from the kernel at the time the probe was fired. bpf_ktime
_get_ns() is an extremely common bit of passed data, given that
we are almost always timing system calls, or system-call fre-
quency, with BPF. Once packed into our data envelope, we deliver
our message with a method call on the BPF_PERF_OUTPUT ring
buffer, which we’ve named events:

events.perf_submit(ctx, &data, sizeof(data));

I need to call a quick time out here, before we head back to the
Python side, to more closely examine the call to BPF_PERF
_OUTPUT(events); and talk about variable scope in your C-side
probe code. BPF_PERF_OUTPUT(events); is the call that creates
the ring-buffer we need to pass our data struct into userspace
(and gives it the name events), and I want to explicitly point out
where in the code it’s being called, namely, above our hello()
function, making it a globally scoped variable within the context
of our probe. That is, events persists between invocations of our
hello() function, so every time the kernel calls sys_clone() and
wakes up our probe, the new invocation of hello() will reuse the
same BPF_PERF_OUTPUT instance.

Stated more explicitly, our hello() function will only be in scope
for a single triggering of a sys_clone() system call. It fires and
exits with each new process created by the kernel, and then it
returns, its context sacrificed to the reallocation gods. This is
fine if we just want to blurt a “hello” into the world per invoca-
tion, but what if we want to do something more stateful? Like,
for example, counting the total number of sys_clone() calls
throughout the lifetime of our probe’s invocation?

The globally scoped events ring buffer implies the answer.
Because it’s scoped outside our hello() function, it remains in
memory as long as our Python script is running. Hence, if BPF
provided something more like a map than a ring buffer (spoiler
alert; it does), we could use that map to store data between
probe invocations and slurp it up on a timer, or when we catch a
keyboard-interrupt on the Python side.

Speaking of the Python side, let’s return there now, where we use
a blocking call to perf_buffer_poll() inside an unbounded loop
to check for new data from our events ring buffer, like Pyramus
constantly slipping downstairs to check for a message from his
cherished neighbor. This polling method is called on the top-level
BPF object, once we’ve explicitly opened the ring buffer with
open_perf_buffer(), the first line of the blurb below:

b["events"].open_perf_buffer(print_event)
while 1:
 try:
 b.perf_buffer_poll()
 except KeyboardInterrupt:
 exit()

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  59

COLUMNS
iVoyeur: BPF—Part Three

There are two important things to note about this open_perf
_buffer() call. The first is its argument, in this case print
_event; this is a function pointer or “callback.” It tells perf
_buffer_poll() where to send the love letters gleaned from the
far side of the wall. The second and more important is how we’re
dereferencing the events ring buffer itself, as a dictionary entry
from the top-level BPF object b["events"].

This brings us to the third means we have of smuggling sweet
nothings through the wall between our kernel space probe and
our userspace Python script: Maps. As I implied above, BPF
provides myriad Map-like data-structures [8] that you can use to
capture stateful information like invocation counts and timings
between the system calls captured by your probe. These data
structures can all be accessed on the Python side as diction-
ary values attached to the top-level BPF object, in the same way
we’re accessing the events ring buffer in the code blurb above:
b["events"].

Let’s take a moment to think about biolatency.py’s require-
ments. From my last article, you’ll remember that we’re inserting
not just one but two block I/O layer probes. The first (depend-
ing on whether we care about queue-time or not) fires on the
blk_start_request() system call and invokes our probe’s
trace_req_start() function. The second fires on the kernel’s
blk_account_io_done() and invokes our trace_req_done()
probe function. In other words, one probe fires when the block
I/O event starts, and the other fires when it ends.

Here’s the code [9]:

if args.queued:
 b.attach_kprobe(event="blk_account_io_start", \
 fn_name="trace_req_start")
else:
 if BPF.get_kprobe_functions(b'blk_start_request'):
 b.attach_kprobe(event="blk_start_request", \
 fn_name="trace_req_start")
 b.attach_kprobe(event="blk_mq_start_request", \
 fn_name="trace_req_start")
b.attach_kprobe(event="blk_account_io_done",
 fn_name="trace_req_done")

If you’ve inferred, without needing to look at the C-side trace-
req functions, that we’re going to be using bpf_ktime_get_ns()
to capture the “start” system time, and again to capture the “end”
system time, and then subtract them to derive an elapsed time
from trace_req_start to trace_req_done, you are absolutely
correct. We’ll use a globally scoped BPF_HASH data structure
to store the start times until they can be matched up to their
respective “done” events. The invocation to create the hash in the
biolatency code looks like this:

BPF_HASH(start, struct request *);

The map structures provided by BPF are sort of reminiscent of
Java generics in that you specify their type as arguments. The
first argument in the call above is its name: start. The second
argument specifies the type of the key value in the hash. Here,
we’re specifying that the hash will be keyed by a struct pointer,
literally a number that represents the memory address where a
block I/O request struct is stored. This is a pretty clever value for
a hash key because it’s terse and will always uniquely identify a
given I/O request between the start syscall and done syscall. The
third argument, which would define the value-type of the hash, is
omitted here, so it defaults to a u64, which happens to be exactly
the return type of bpf_ktime_get_ns().

This BPF_HASH structure is only used to hold the timestamps
of each start probe firing. It doesn’t communicate anything to
userspace since its values are set by the start probe and deref-
erenced by the done probe to compute an elapsed time for the
I/O request. This means we need another structure to store the
elapsed times and communicate these through the wall to the
Python side.

You might remember from my first article on eBPF tools [10] that
biolatency.py presents these values in the form of a histogram,
keyed in various ways based on user-provided options (overall
summary, per-disk, per I/O-type (read/write etc.)). The use of a
histogram here makes a lot of sense because, as you can probably
imagine, a busy box may produce a high cardinality of I/O request
syscalls. If we tried to shove a note through the wall for every I/O
request as we did in the previous examples, we might undermine
the wall and send the house collapsing down on top of our heads.

Instead, biolatency keeps the data kernel-side, using globally
scoped HISTOGRAM data-structure to collect the timings com-
puted by our probe’s done function, as a series of counters within
a distributed series of “buckets” representing the range of their
values. This is easy on kernel memory (since we’re merely storing
64 counters) as well as on the userspace boundary (since we only
need to transfer these values once, when we tear down the probe).

Unfortunately, things get a little muddled here since biolatency.py
needs to use a few different storage back ends and techniques
depending on end-user options. Rather than glossing over the
interesting details in the space I have left, I will see you in the
next issue, where we will take a brief tour of histogram theory,
base-two logarithms and the “powers of two rule,” and decode
biolatency.py’s series of substitution choices for the different
kinds of block I/O histograms it can depict.

Take it easy.

60    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
iVoyeur: BPF—Part Three

References
[1] Not a fact. Completely made up.

[2] Romeo and Juliet were imaginary characters who never read
Ovid, and that’s not how media influence works.

[3] D. Josephsen, “iVoyeur: eBPF Tools,” ;login:, vol. 45, no. 2
(Summer 2020): https://www.usenix.org/publications/login​
/summer2020/josephsen.

[4] https://github.com/iovisor/bcc/blob/master/examples/hello​
_world.py.

[5] https://github.com/iovisor/bcc/blob/10603c7123c4b215719
0151b63ea846c04c76037/src/python/bcc/__init__.py#L1214.

[6] https://github.com/iovisor/bcc/blob/master/examples​
/tracing/hello_perf_output.py.

[7] https://github.com/iovisor/bcc/blob/master/docs/reference​
_guide.md#data.

[8] https://github.com/iovisor/bcc/blob/master/docs/reference​
_guide.md#maps.

[9] https://github.com/iovisor/bcc/blob/master/tools/biolatency​
.py#L135-L142.

[10] D. Josephsen, “iVoyeur—eBPF Tools: What’s in a Name?”
;login:, vol. 45, no. 1 (Spring 2020): https://www.usenix.org​
/publications/login/mar20/josephsen.

Submit Your Work!

AUGUST 11–13, 2021
VANCOUVER, B.C . , CANADA

The 30th USENIX Security Symposium will bring together researchers, practitioners, system
 administrators, system programmers, and others to share and explore the latest advances
in the security and privacy of computer systems and networks.

www.usenix.org/sec21

PROGRAM CHAIRS

Michael Bailey
University of Illinois

at Urbana–Champaign

Rachel Greenstadt
New York University

Paper submission deadlines:
Fall: Thursday, October 15, 2020
Winter: Thursday, February 4, 2021

https://www.usenix.org/publications/login/summer2020/josephsen
https://www.usenix.org/publications/login/summer2020/josephsen
https://github.com/iovisor/bcc/blob/master/examples/hello_world.py
https://github.com/iovisor/bcc/blob/master/examples/hello_world.py
https://github.com/iovisor/bcc/blob/10603c7123c4b2157190151b63ea846c04c76037/src/python/bcc/__init__.py#L1214
https://github.com/iovisor/bcc/blob/10603c7123c4b2157190151b63ea846c04c76037/src/python/bcc/__init__.py#L1214
https://github.com/iovisor/bcc/blob/master/examples/tracing/hello_perf_output.py
https://github.com/iovisor/bcc/blob/master/examples/tracing/hello_perf_output.py
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#data
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#data
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#maps
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#maps
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L135-L142
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L135-L142
https://www.usenix.org/publications/login/mar20/josephsen
https://www.usenix.org/publications/login/mar20/josephsen

