
www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  61

COLUMNS

Programming Workbench
Hand-Over-Hand Locking for Highly Concurrent Collections

T E R E N C E K E L L Y

Terence Kelly studied computer science at
Princeton and the University of Michigan,
followed by a long stint at Hewlett-Packard
Laboratories. Kelly now writes code and
documentation promoting persistent memory
programming and other programming tech-
niques. He usually avoids falling off the monkey
bars on the playground by remembering to grab
the next bar before letting go of the previous
one. His publications are listed at http://ai.eecs​
.umich.edu/~tpkelly/papers/ and he welcomes
feedback at tpkelly@eecs.umich.edu.

W elcome to “Programming Workbench,” a new column that will
delve into interesting programming problems and solve them
with working software. All code is available in machine-readable

form at [7]. I welcome feedback from readers, the best of which I may discuss
in future columns.

This first installment of “Programming Workbench” reviews a concurrent programming
pattern that every developer should know: hand-over-hand locking. Over the past year, I’ve
been surprised more than once to meet well-educated, experienced, proficient programmers
who aren’t familiar with this versatile and powerful technique. After a bit of digging I began
to understand why it’s underappreciated: hand-over-hand locking isn’t mentioned at all in
numerous places where I’d expect a detailed treatment: for example, several Pthreads books
and several other books on systems programming in my personal library. A few books men-
tion it without going into great detail [1, 8]. One magazine article discusses the technique at
length without providing code [10]. I found only one source with both a detailed discussion
and an implementation (in Java) [2].

Why should programmers care about concurrency control in general and hand-over-hand
locking in particular? In a word, performance. Even in the bygone age of uniprocessors, multi-
threaded code made servers more efficient and made interactive software more responsive by
overlapping computation with I/O. Today, well-designed concurrent software enjoys genuine
parallel execution on ubiquitous multicore and multiprocessor hardware. Embarrassing par-
allelism, in which different threads don’t interact at all, remains “good work if you can find
it”; most multithreaded software, however, isn’t so lucky and must orchestrate orderly access
to shared memory. Mutex-based concurrency control is the most conventional way to do so,
and hand-over-hand locking is a primordial pattern that embodies timeless principles—and
sometimes outperforms the alternatives.

So let’s brush up on hand-over-hand locking. We’ll start with the simplest dynamic data
structure, the singly linked list, and review several ways to arrange safe access to linked lists
in multithreaded programs. We’ll consider hand-over-hand locking in detail, describing its
advantages over the alternatives. We’ll walk through a working C program whose threads
employ the hand-over-hand protocol to access a linked list. Finally, we’ll conclude with gen-
eralizations and extensions of the basic techniques that we’ve covered.

Concurrent Lists
A linked list is an easy way to implement the abstraction of an unordered, unindexed, dynamic
collection of items. Lists support all of the operations that make sense for such collections:
traversing the contents of a collection and inserting, reading, writing, and deleting items
along the way. I’d use the word “set” rather than “collection” but in some contexts, e.g., the C++
Standard Template Library, <set> confusingly refers to an ordered container. Lists are useful
in themselves and also as building blocks in more elaborate data structures, e.g., hash tables.

http://ai.eecs.umich.edu/~tpkelly/papers/
http://ai.eecs.umich.edu/~tpkelly/papers/

62    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
Programming Workbench: Hand-Over-Hand Locking for Highly Concurrent Collections

If multiple threads access a collection concurrently, they must
avoid data races, which lead to undefined behavior according
to the C and C++ language standards. There are several ways to
implement a concurrent list safely.

Transactional Memory
Arguably the easiest concurrency control mechanism from the
programmer’s point of view is transactional memory (TM). TM
allows a thread to execute a sequence of instructions atomi-
cally and in isolation, preventing other threads from observing
intermediate states of the data that the instructions manipulate.
A concurrent linked list based on TM avoids data races, and some
TM research prototypes would allow genuine parallel access to a
linked list, but mainstream TM implementations would effec-
tively serialize access to the list. In other words, for the present
purpose, off-the-shelf industrial-strength TM-based concur-
rency control would combine the safety and simplicity of single-
threaded code with the performance of single-threaded code,
defeating one of the main motives for multithreading.

Non-Blocking Approaches
At the opposite ends of the ergonomic and performance spectra
lie non-blocking (lock-free, wait-free) techniques based on the
careful use of atomic CPU instructions. The main attraction of
non-blocking techniques is that the untimely suspension or death
of one thread (due, for example, to a software bug or an unfor-
tunate CPU scheduling decision) doesn’t prevent other threads
from doing useful work. That’s a major advantage compared
with mutex-based isolation, which offers no similar guarantee.
The main downsides of non-blocking techniques are that they’re
rather esoteric, to put it mildly—every new contribution is a tour
de force by experts—and sometimes they work best with auto-
matic garbage collection. See Michael [6] for a good example of a
non-blocking list and Herlihy and Shavit [2] for a broad discus-
sion of non-blocking techniques.

Mutex-Based Isolation
Mutex-based isolation is well understood, and good implementa-
tions of POSIX-standardized mutexes have been available for
decades. Protecting an entire linked list with a single mutex is
easy, but such coarse-grained locking serializes access to the list
and creates a potential performance bottleneck.

Fine-grained locking for a linked list means associating a mutex
with each list node. Per-node locks allow multiple threads to
access different parts of the list simultaneously, potentially
improving performance. Fine-grained locking, however, isn’t
guaranteed to be faster, and indeed it can be slower than coarse-
grained locking, depending on myriad details beyond the scope of
this column. A more worrisome downside of fine-grained locking
is that it’s just plain trickier than coarse-grained locking; oppor-
tunities abound for errors that can cause data races or deadlocks.

It pays to study carefully the correct access discipline, hand-
over-hand locking. We’ll walk through an implementation, and
then we’ll reflect on the protocol’s properties and benefits.

The Code
The C99/C11 program listed in this section is available at [7].
We’ll pore over everything but boilerplate like #includes. The
purpose of the example program is to emphasize the locking
protocol, so it avoids frills for the sake of clarity.

The following struct is the building block of our linked list. Each
node on the list contains the mutex that protects it, a simple data
field, and a pointer to the next node on the list.

typedef struct node { pthread_mutex_t m;
 int data;
 struct node *next; } node_t;

For brevity and simplicity we’ll just hard-wire a short list into
the program. The list consists of a dummy head node followed by
five “real” nodes, A through E, whose data fields are respectively
initialized to values 1 through 5:

#define PMI PTHREAD_MUTEX_INITIALIZER
static node_t E = {PMI, 5, NULL},
 D = {PMI, 4, &E},
 C = {PMI, 3, &D},
 B = {PMI, 2, &C},
 A = {PMI, 1, &B},
 head = {PMI, 0, &A}; // dummy node

For diagnostic printouts, it’s convenient to derive a human-
readable name from a pointer to a node. Since our quick-and-
dirty program uses a short hardwired list, we can get away with
a static mapping of node pointers to name strings. Compared
with the alternative of an if/else statement cascade, the ternary
operator (?:) saves keystrokes and yields a pure expression:

A simple program isn’t well served by elaborate, verbose runtime
checks, so we use a handful of succinct function-like macros
to consolidate error checking. All of our function-like macros
expand to expressions rather than statements because expres-
sions may appear in a wider range of contexts; later we’ll see one
in the initialization part of a for loop.

If anything unexpected happens, the program falls on its sword
via the DIE() macro below, which expands to a parenthesized
expression that uses the comma operator to evaluate perror()
and assert() for their side effects: perror() prints an interpre-

#define NAME(p) (&head == (p) ? "head" \
 : &A == (p) ? "A" \
 : &B == (p) ? "B" \
 : &C == (p) ? "C" \
 : &D == (p) ? "D" \
 : &E == (p) ? "E" \
 : NULL == (p) ? "NULL" : (assert(0), "?"))

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  63

COLUMNS
Programming Workbench: Hand-Over-Hand Locking for Highly Concurrent Collections

tation of errno; assert() prints the filename and line number
where things went wrong and dumps a core file that we may
autopsy with a debugger. DIE() appears in contexts like func()
&& DIE(“func”), where func() returns nonzero to indicate fail-
ure. The short-circuit property of the && operator ensures that
DIE() is evaluated if and only if func() fails.

There’s a lot to unpack in the PT() macro above, so we’ll walk
through it slowly to see how it leverages several C preprocessor
features. The problem PT() solves is that several Pthreads func-
tions we use don’t set the standard errno variable but instead
return an error number; they return zero to indicate success.
PT() allows us to call any of these functions, arranging for errno
to be set and DIE() to be called if the function returns nonzero.
The easiest way to understand how PT() does its job is to expand
a typical use with the compiler’s preprocessor ("gcc -E"). For
example, expanding PT(join, t[i], &tr); and formatting for
clarity yields:

(
 (errno = pthread_join (t[i], &tr))
 &&
 (perror("join"), assert(0), 1)
);

The token-pasting operator ## glues PT()’s first argument, join
in the example above, to pthread_. All subsequent arguments to
PT() correspond to the ellipsis parameter ("...") in the macro def-
inition, so they get dropped in where __VA_ARGS__ appears in the
macro replacement list. In the example above, the last two PT()
arguments t[i] and &tr end up as arguments to pthread_join().
The return value of pthread_join() is assigned to the standard
errno variable; POSIX defines errno to be a per-thread variable,
so there’s no data race if two threads call PT() concurrently. The
&& operator ensures that control reaches the expanded DIE()
macro if and only if pthread_join() returns nonzero to indi-
cate failure. Finally, notice in PT()’s definition that parameter
f appears a second time in its replacement list, in “DIE(#f)”. A
single # is the “stringification” operator: in the example above,
PT() argument join corresponds to PT() parameter f, so DIE(#f)
in PT()’s replacement list expands to DIE("join"), whose expan-
sion places the "join" in perror("join").

Given a pointer to a list node, the LOCK() and UNLK() macros
below lock and unlock the mutex embedded in the node. UNLK()
also sets the pointer to NULL, which helps to catch a common and
insidious bug: dereferencing a pointer to a node after unlock-
ing the node. That would have been a silent data race, but we’ve
turned it into a loud SIGSEGV.

The next macro isn’t strictly necessary, but it facilitates testing
on my computer. The standard printf() function is thread-safe,
but two race detectors that I use, Helgrind and DRD from the
Valgrind family of tools, falsely attribute data races to printf().
Protecting printf() with a mutex squelches these false positives.
The print mutex can’t cause a deadlock because we never try to
lock any other mutex while holding it.

static pthread_mutex_t pm = PMI; // print mutex
#define printf(...) \
 do { PT(mutex_lock, &pm); printf(__VA_ARGS__); \
 PT(mutex_unlock, &pm); } while (0)

Now we’re ready for the interesting part: function hoh() below
traverses our linked list, observing the hand-over-hand locking
protocol. hoh() will be the start routine passed to pthread_create().
Its lone argument will be an identifier string that prefixes each
thread’s diagnostic printouts. These prefixes make it easy to
separate out per-thread reports to see what each thread saw as it
traversed our linked list.

The for loop of hoh() walks two pointers down the linked list: n
(“next”) goes first, followed by p (“previous”). The loop initializa-
tion locks the dummy head node, and the loop body iterates once
per non-dummy node. At comment A, node *p is a locked node
whose successor node *n exists; *p might point to the dummy
head node—it does on the first iteration—but n never points to the
head.

Now comes the “hand-over-hand” aspect: We lock the next node
*n while still holding a lock on its predecessor *p. At no point in
the for loop is it safe to access *n’s successor (*n->next), which
is unlocked, but after locking *n we may access pointer n->next,

#define LOCK(p) PT(mutex_lock, (&((p)->m)))
#define UNLK(p) ((void)PT(mutex_unlock, (&((p)->m))), (p)=NULL)

static void * hoh(void * ID) {
 char *id = (char *)ID;
 node_t *p, *n; // "previous" follows "next" down the list
 printf("%s: begin\n", id);
 for (p = &head, LOCK(p); NULL != (n = p->next); p = n) {
 // A: *p locked & might be dummy head
 // *n not yet locked & can't be head
 LOCK(n);
 // B: we may remove *n here
 UNLK(p);
 // C: best place to inspect *n or insert node after *n
 printf("%s: node %s @ %p data %d\n",
 id, NAME(n), (void *)n, n->data);
 n->data++;
 }
 // D
 sleep(1) && DIE("sleep"); // stall for "convoy" interleaving
 UNLK(p);
 printf("%s: end\n", id);
 return id;
}

#define DIE(s) (perror(s), assert(0), 1)
#define PT(f, ...) ((errno = pthread_ ## f (__VA_ARGS__)) \
 && DIE(#f))

64    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
Programming Workbench: Hand-Over-Hand Locking for Highly Concurrent Collections

for example, to see if we’re at the end of the list by comparing
it to NULL. Comment B, where both *p and *n are locked, is the
right place to remove *n. We must lock two consecutive nodes
to remove the one farther down the list, otherwise concurrent
attempts by different threads to remove two adjacent nodes may
interfere in such a way that only one node is removed [2].

After comment B we unlock *p. At comment C, node *n alone is
locked; this is the best place for inspecting or modifying the con-
tents of *n alone because other nodes may access *p simultane-
ously. We can insert a node after *n here too, but first we should
ask why we care where to place a new node if the list represents
an unordered collection—why not simply insert at the head of the
list? At comment C we no longer hold a lock on *p so it’s no longer
safe to read or write *p; as noted above, the UNLK() macro sets *p
to NULL to catch careless errors. Our example program prints the
name and data field of node n and then increments the data field.

After the for loop terminates at the end of the list, at comment D
we gratuitously sleep() while holding a lock on the last list node
to produce an interesting “convoy” interleaving of threads.

Inserting a node into the list doesn’t require anything like hoh().
Simply lock the head node and splice in the new node after it. If
a list represents an unordered collection, there’s seldom a good
reason to insert anywhere else. It’s possible to use a list to repre-
sent an ordered collection by inserting nodes into proper position
according to some comparison criterion, but if the collection is
large and we must frequently search it to find particular nodes,
then a list will be inefficient compared with a search tree or skip
list. If an ordered collection is not large it might be reasonable to
store it as a list, but coarse-grained locking might outperform
fine-grained locking.

The main() function below runs hoh() twice single-threaded
then spawns several threads that concurrently traverse the list.

#define NTHREADS 4
int main(void) {
 pthread_t t[NTHREADS]; int i; void *tr;
 char m1[] = "1st (serial) traversal",
 m2[] = "2nd (serial) traversal",
 id[NTHREADS][3] = {{"T0"},{"T1"},{"T2"},{"T3"}};
 hoh((void *)m1);
 hoh((void *)m2);
 printf("\nmain: going multi-threaded:\n\n");
 for (i = 0; i < NTHREADS; i++)
 PT(create, &t[i], NULL, hoh, (void *)id[i]);
 for (i = 0; i < NTHREADS; i++) {
 PT(join, t[i], &tr);
 printf("main: joined %s\n", (char *)tr);
 }
 printf("\nmain: all threads finished\n");
 return 0;
}

The example code tarball at [7] includes a README contain-
ing the commands that I use to compile and run the example
program. When the program runs, the interleaving of individual
thread outputs reflects the interleaving of the threads them-
selves as they walk down the list. In the typical output below,
thread T1 zooms down the list, then stalls at the sleep(1) call
while holding a lock on the last node, E. T2 then gets as far as D,
T0 advances to C, and T3 makes it only to B. T1 wakes, releases
its lock on E and exits, allowing T2, T0, and T3 to each take a step
forward on the list in that order. When T2 exits, T0 and T3 each
advance one hop forward. Thus the convoy of threads plods down
the list in the manner of an inchworm.

T1: begin
T1: node A @ 0x557caa098120 data 3
T1: node B @ 0x557caa0980e0 data 4
T1: node C @ 0x557caa0980a0 data 5
T1: node D @ 0x557caa098060 data 6
T1: node E @ 0x557caa098020 data 7
T2: begin
T2: node A @ 0x557caa098120 data 4
T2: node B @ 0x557caa0980e0 data 5
T2: node C @ 0x557caa0980a0 data 6
T2: node D @ 0x557caa098060 data 7
T0: begin
T0: node A @ 0x557caa098120 data 5
T0: node B @ 0x557caa0980e0 data 6
T0: node C @ 0x557caa0980a0 data 7
T3: begin
T3: node A @ 0x557caa098120 data 6
T3: node B @ 0x557caa0980e0 data 7
T1: end
T2: node E @ 0x557caa098020 data 8
T0: node D @ 0x557caa098060 data 8
T3: node C @ 0x557caa0980a0 data 8
T2: end
T0: node E @ 0x557caa098020 data 9
T3: node D @ 0x557caa098060 data 9
T0: end
T3: node E @ 0x557caa098020 data 10
T3: end

Filtering the output (e.g., "./hoh | grep '̂ T0:'" for thread T0)
makes it easier to see what individual threads encountered as
they traversed the list:

T0: begin
T0: node A @ 0x557caa098120 data 5
T0: node B @ 0x557caa0980e0 data 6
T0: node C @ 0x557caa0980a0 data 7
T0: node D @ 0x557caa098060 data 8
T0: node E @ 0x557caa098020 data 9
T0: end

T1: begin
T1: node A @ 0x557caa098120 data 3
T1: node B @ 0x557caa0980e0 data 4
T1: node C @ 0x557caa0980a0 data 5
T1: node D @ 0x557caa098060 data 6
T1: node E @ 0x557caa098020 data 7
T1: end

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  65

COLUMNS
Programming Workbench: Hand-Over-Hand Locking for Highly Concurrent Collections

T2: begin
T2: node A @ 0x557caa098120 data 4
T2: node B @ 0x557caa0980e0 data 5
T2: node C @ 0x557caa0980a0 data 6
T2: node D @ 0x557caa098060 data 7
T2: node E @ 0x557caa098020 data 8
T2: end

T3: begin
T3: node A @ 0x557caa098120 data 6
T3: node B @ 0x557caa0980e0 data 7
T3: node C @ 0x557caa0980a0 data 8
T3: node D @ 0x557caa098060 data 9
T3: node E @ 0x557caa098020 data 10
T3: end

Each thread saw the list as previous threads left it, precisely as
though the list were protected by a single mutex.

Properties and Benefits
That’s an important attraction of hand-over-hand locking: we
get the parallelism of fine-grained locking with the simple, sane
semantics of coarse-grained locking; the changes that one thread
makes while traversing the list are, from the viewpoint of all
other threads, atomic. As the list grows large, at some point fine-
grained locking usually begins to improve performance com-
pared with coarse locking, though exactly when depends on the
details. Deadlock is impossible because all threads acquire locks
in the same order, i.e., list order.

The major limitation of hand-over-hand locking is that threads
must traverse the list in one direction only. One implication of
this “don’t look back” rule is that a thread can’t atomically splice
a node out of the middle of a long list and splice it back in at the
head, which is a bummer, because move-to-front lists offer
outstanding performance for some purposes [9]. More generally,
hand-over-hand locking doesn’t allow us to arbitrarily rearrange
a linked list. If we want to rearrange a list with per-node mutexes
we can simply lock the head node and hold that lock while lock-
ing hand-over-hand to the end of the list, thus ensuring that no
other threads are accessing any node; then we may alter the list
arbitrarily, because effectively we’ll be holding a big lock on the
entire list.

Generalizations and Extensions
Linked lists are a natural way to implement unordered, unin-
dexed collections. Hash tables implement unordered but indexed
collections, and search trees implement ordered and indexed
collections. The techniques we’ve discussed generalize beyond
linked lists to hash tables and search trees: hash tables can
represent hash buckets as linked lists, each of which may employ
fine-grained locking, and search trees can employ hand-over-
hand locking directly.

Unfortunately, the fine-grained locking story for hash tables and
search trees isn’t as tidy and compelling as that for linked lists.
Hash tables invite medium-grained locking—one mutex per hash
bucket—which makes more sense than fine-grained locking in
the typical case where each bucket contains only a handful of
items. Implementing hand-over-hand locking for balanced search
trees is quite tricky [10].

Persistence
Making a linked list persistent is conceptually straightforward:
we lay out the list in a file-backed memory mapping with help from
a few simple persistent memory programming techniques [3, 4].
Supporting high concurrency in a persistent linked list using
the techniques discussed above requires “persistence-friendly”
mutexes suitable for embedding in persistent data structures,
which ordinary pthread_mutex_ts aren’t. The design of persis-
tence-friendly mutexes is beyond the scope of this column; the
main difficulty involves mutex initialization when a program
restarts.

If a persistent and highly concurrent linked list must tolerate
crashes, for example, because we can’t guarantee that the pro-
gram accessing it will always enjoy an orderly shutdown, we’ll
need a suitable crash tolerance mechanism. On conventional
hardware the right crash tolerance mechanism for persistent
memory programming is remarkably easy to implement by lever-
aging features present in certain file systems [4]. Crash tolerance
imposes further requirements on persistence-friendly mutexes:
post-crash recovery must quickly and conveniently restore all
embedded mutexes to an unlocked as well as initialized state.
The most onerous requirement on any program that purports to
tolerate crashes is that it survive strenuous, realistic tests [5].
Documenting the design, implementation, and testing of persis-
tent, crashproof, and highly concurrent data structures is future
work, perhaps for a future installment of this column.

Conclusion
Despite their well-known shortcomings, old-fashioned mutexes
will be with us for a long time to come. Even today, conventional
mutual exclusion sometimes outshines the alternatives, and
fine-grained locking is sometimes the best foundation for high-
performance concurrent data structures. Hand-over-hand
locking is a conceptually simple protocol for safe multithreaded
access to data structures protected by fine-grained locks. The
simplest context where fine-grained locking and hand-over-
hand traversal make sense is a linked list, and any serious
student of concurrent programming should master this primor-
dial pattern.

66    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
Programming Workbench: Hand-Over-Hand Locking for Highly Concurrent Collections

Readers who want to go further might conduct experiments to
explore the tradeoffs in different designs. For a concurrent linked
list, when is it faster to use a single mutex on the entire list versus
per-node mutexes? Are spinlocks faster than pthread_mutex_ts?
If a single lock protects the entire list, how much does the move-
to-front heuristic [9] help for realistic access patterns? Does it
ever pay to maintain list items in sorted order? How do hand-
crafted concurrent lists compare to off-the-shelf library imple-
mentations of unordered unindexed collections? Please share
your results with me!

References
[1] R. Arpaci-Dusseau and A. Arpaci-Dusseau, “Lock-Based
Concurrent Data Structures,” in Operating Systems: Three
Easy Pieces, Chapter 29, p. 9: http://pages.cs.wisc.edu/~remzi​
/OSTEP/threads-locks-usage.pdf.

[2] W. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming (Morgan Kaufmann, 2008).

[3] T. Kelly, “Persistent Memory Programming on Conven-
tional Hardware,” ACM Queue, vol. 17, no. 4 (July/August
2019): https://queue.acm.org/detail.cfm?id=3358957.

[4] T. Kelly, “Good Old-Fashioned Persistent Memory,”
;login:, vol. 44, no. 4 (Winter 2019): https://www.usenix.org​
/publications/login/winter2019/kelly.

[5] T. Kelly, “Is Persistent Memory Persistent?” ACM Queue,
vol. 18, no. 2 (March/April 2020): https://queue.acm.org/detail​
.cfm?id=3400902.

[6] M. M. Michael, “High Performance Dynamic Lock-Free
Hash Tables and List-Based Sets,” in Proceedings of the 14th
ACM Symposium on Parallel Algorithms and Architectures
(SPAA 2002): https://docs.rs/crate/crossbeam/0.2.4/source​
/hash-and-skip.pdf. DOI: https://dl.acm.org/doi/10.1145​
/564870.564881

[7] T. Kelly, Example code to accompany this article: https://​
www.usenix.org/sites/default/files/kelly0920_code.tgz.

[8] M. Scott, Programming Language Pragmatics, Third Edi-
tion (Morgan Kaufmann, 2009). See Exercise 12.14 on p. 642.

[9] D. Sleator and R. Tarjan, “Amortized Efficiency of List
Update and Paging Rules,” Communications of the ACM, vol.
28, no. 2 (February 1985): https://www.cs.cmu.edu/~sleator​
/papers/amortized-efficiency.pdf. DOI: https://dl.acm.org/doi​
/10.1145/564870.564881

[10] H. Sutter, “Choose Concurrency-Friendly Data Struc
tures,”Dr. Dobb’s Journal, June 27, 2008: http://www.drdobbs​
.com/parallel/choose-concurrency-friendly-data-structu​
/208801371.

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks-usage.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks-usage.pdf
https://queue.acm.org/detail.cfm?id=3358957
https://www.usenix.org/publications/login/winter2019/kelly
https://www.usenix.org/publications/login/winter2019/kelly
https://queue.acm.org/detail.cfm?id=3400902
https://queue.acm.org/detail.cfm?id=3400902
https://docs.rs/crate/crossbeam/0.2.4/source/hash-and-skip.pdf
https://docs.rs/crate/crossbeam/0.2.4/source/hash-and-skip.pdf
https://dl.acm.org/doi/10.1145/564870.564881
https://dl.acm.org/doi/10.1145/564870.564881
https://www.usenix.org/sites/default/files/kelly0920_code.tgz
https://www.usenix.org/sites/default/files/kelly0920_code.tgz
https://www.cs.cmu.edu/~sleator/papers/amortized-efficiency.pdf
https://www.cs.cmu.edu/~sleator/papers/amortized-efficiency.pdf
https://dl.acm.org/doi/10.1145/564870.564881
https://dl.acm.org/doi/10.1145/564870.564881
http://www.drdobbs.com/parallel/choose-concurrency-friendly-data-structu/208801371
http://www.drdobbs.com/parallel/choose-concurrency-friendly-data-structu/208801371
http://www.drdobbs.com/parallel/choose-concurrency-friendly-data-structu/208801371

