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It’s commonly said that in UNIX, “everything is a file.” 
The meaning of this catchy aphorism is that most UNIX resources can be accessed 
using names in the file system with a small, consistent set of function calls. So not only 

can we open(), read(), and eventually close() regular files like /etc/motd and /bin/ls, we 
can read the contents of the hard drive (if you have suitable permissions) by opening /dev​ 
/disk0, the first physical disk on a Macintosh, and even /dev/mem, the Linux “device” that lets 
user processes read system memory. 

In this column I’ll look at the origins of files and file systems, and contrast the UNIX approach 
with a subtly different approach that was developed for the Multics operating system, in which 
files are actually named segments in a two-dimensional memory address space. On Multics, 
saving a “file” was really creating a named memory segment and then persisting it to long-
term storage. Finally, I’ll look at how the idea of named persistent memory segments backed 
by non-volatile memory is making a comeback and will likely be an important part of the stor-
age stack in the near future.

The Historical File
Back in the 1500s a fyle was a string or wire used to bind together paper documents, or so 
reports the Oxford English Dictionary: “Thapothecaries shall kepe the billis that they serue, 
vpon a fyle” (1525). Also spelled file, by 1600 the word was used variously to denote the docu-
ments in a legal proceeding; a catalog, list, or roll; or even the figurative thread of a person’s life. 

Put simply, English has had a difficult relationship with the word “file” since the beginning. 
Sometimes the word refers to the case or container for organizing physical embodiments of 
information, sometimes it refers to the objects put into that container, and sometimes it refers 
to the information itself.

Although these days most information that’s stored in files is video, when I think of a “file” on 
my computer, I typically think of a text file. That is, I think of a collection of lines, each some-
where between 1 and 80 characters long, separated by some kind of “end-of-line” character. 
And for this I have to thank Herman Hollerith and the company he created, The Tabulating 
Machine Company. 

Hollerith graduated from Columbia University in 1879 and took a job working for one of his 
professors, William P. Trowbridge, who had just taken a temporary assignment working 
on the 1880 Census in Washington, DC, where he was compiling statistics on power and 
machinery used in manufacturing. Looking back, this wasn’t very surprising: by all accounts 
Hollerith was a hard-working, brilliant, and ambitious fellow who frequently attracted the 
mentorship of his older colleagues. 

Once in Washington, DC, Hollerith met another future mentor, John Shaw Billings, a surgeon 
who had become the director of the Army Surgeon General’s library after serving in the Civil 
War. Billings was also working on the Census, where he was in charge of tabulating vital 
statistics.
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The 1880 Census, also known as the 10th Census, was a massive 
information operation. Census employees collected data from all 
over the country and brought it to Washington, DC, where it was 
manually processed according to many different criteria—a pro-
cess called tabulating—and eventually published. You can think 
of this processing as a series of SQL SELECT statements with 
suitable GROUP BY and WHERE clauses. The 10th Census used 
computers as well, but they were all the human kind [1]. 

The Card File
Billings suggested that Hollerith create some kind of machine to 
mechanize the laborious tabulation process. Perhaps Hollerith 
could build a machine that counted notches on cards of paper, 
Billings suggested, with each card representing a single person’s 
demographic characteristics, like their age or sex? Hollerith 
found this idea fascinating and eventually transferred to work 
under Billings in the vital statistics division just to spend a few 
months learning the job. When the work on the 10th Census 
started winding down in 1881, Hollerith moved to Boston, where 
he had been offered a teaching position at the Massachusetts 
Institute of Technology.

When he wasn’t teaching, Hollerith experimented with ideas 
for the census machine. Inventing was far more interesting to 
Hollerith than teaching—he couldn’t stand the thought of teach-
ing the same course a second time—so he quit the Institute and 
took a job back in Washington, DC as a patent examiner. But once 
he learned the ins-and-outs of the US patent system, he quit that 
job and became a full-time inventor, supporting himself by doing 
patent work for others. 

Hollerith’s first census machine patent application described a 
machine with a long tape of paper and rows of holes represent-
ing each person, but Hollerith eventually returned to an idea 
suggested by Billings. He built prototype machines and, with 
Billings’ help, used them in vital statistics projects in Baltimore 
and New York City. 

The 11th Census had a competition for a machine to assist in 
the tabulations: Hollerith’s machine was one of three tested. 
Hollerith won the contract, supplied the tabulating equipment 
for the 11th Census, and eventually incorporated The Tabulating 
Machine Company in 1896. The company merged with its com-
petitors in 1911 to form the Computing-Tabulating-Recording 
Company, which was renamed International Business Machines 
in 1924. 

The Hollerith cards used in the 1890 Census had 12 rows of 24 
columns and were sized 65/8" by 33/4" so that they fit perfectly 
inside boxes used to store paper money. When users needed 
more storage per card, the space between the rows was reduced, 
allowing the card to hold 45 columns. This still wasn’t enough 
storage, so in 1928 IBM standardized on a card of 73/8" by 31/4" 

with rectangular holes punched in 80 columns of 12 rows. That 
was the final standard, and it had lasting influence. The IBM 
3270 display terminal introduced in 1971 had an 80-character 
wide screen, as did the IBM PC introduced in 1981. Indeed, 
PEP 8—Style Guide for Python Code, last revised in August 2013, 
recommends that source code not exceed 79 characters because 
some editors wrap when the user tries to edit the last character 
on an 80-character line. 

Older readers may recall receiving punch card checks and utility 
bills imprinted with the words “do not fold, spindle or mutilate.” 
A spindle is a nasty spike pointed straight up and mounted on 
a weight for holding papers. That is, a spindle is a fyle, and you 
should avoid using a spindle to file your card file, because the 
extra hole will be read as an error.

Larger punch cards were used for voter ballots in various parts 
of the United States until the election of November 2000, after 
which they were largely replaced due to concerns over their 
usability and accuracy. 

The Circular File
Punch cards were all the rage in information processing for more 
than a half century. The US Social Security Administration had a 
master card file sorted by each person’s nine-digit social security 
number. It had another set of punch cards sorted according to 
the phonetic code of each person’s surname. Chrysler had punch 
cards for its inventory control system. Grades from standard-
ized exams were punched onto cards [2], making it easier for 
researchers to compute statistics. Really, almost every bit of 
information that was needed for later processing was stored on 
punch cards. Even though early computers had magnetic tape, 
data on tapes was frequently loaded using high-speed punch 
card readers, and put back onto cards for long-term storage after 
processing.

In 1956, IBM announced the IBM 305 RAMAC, the Random 
Access Memory Accounting System. The system’s breakthrough 
technology was the IBM 350, the world’s first commercial hard 
drive. There were 50 metal disks, each with 100 concentric 
tracks, and a moving read/write-head assembly. The whole 
thing could store five million 6-bit characters, or 3.75MB. The 
base system rented for $3,200/month, of which $650 was for 
the disk storage unit. IBM sold more than a thousand of these 
vacuum tube-based computers until 1961, when the line was 
discontinued. 

Programming the 305 was complicated: not only was there nothing 
resembling a modern file system, the program itself had to include 
pauses to allow the RAMAC’s disks to rotate into the appropriate 
position and for the head to complete any required seek operations. 
When I downloaded and read the 1957 manual [3], I was most 
surprised by the matter-of-fact way that IBM described the 305. 
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It’s not a general-purpose computer that has a first-in-the-world 
megabyte-sized random access memory: it’s a system designed 
for the specific task of helping companies automate inventory, 
billing, and accounts receivable. That is, it’s an electronic punch 
card file! The big paradigm shift that the manual tries to convey 
to the reader is that idea that “files are located in the machine,” 
—emphasis in the original—rather than in some external box.

Old paradigms die hard.

On UNIX, Everything Is a File
Modern UNIX and Linux owes much of its flexibility to the 
way that the operating system handles files and file systems. 
While other operating systems maintain a different namespace 
for every physical device, UNIX puts everything into a single 
hierarchy, a single unified naming system for all files currently 
accessible. 

The second advantage of the “everything is a file” approach 
manifests when programs running on UNIX get a “file” to open 
and, lo, it’s actually the name of a device. Most UNIX programs 
will still work, provided that the calling process has the correct 
authorization to open the file. 

This ability to treat devices as files extends to pseudo-devices 
like /dev/stdin, /dev/stdout, and /dev/tty, which map to stdin, 
stdout, and the controlling terminal of the current process. For 
example, while some programs like wc will take their input from 
stdin if no input file is provided, other programs will only take 
their input from “files.” You can give these programs /dev/stdin 
as their input file and then put them into a shell pipeline, like a 
properly written UNIX program.

Recently, I had a program that decided what file type it was read-
ing by looking at the file’s extension. I wanted the program to 
read its input from a pipe. My solution was to create symbolic in  
/tmp with the appropriate extension, point the link at /dev/stdin, 
and give the program the link for its input. Convoluted, perhaps, 
but the hack worked the first time.

Another thing that is obviously not a file is memory. Yes, Linux 
systems have devices like /dev/mem and /dev/kmem that let 
programs access memory through the file system, but memory is 
not file. And although UNIX and Linux have the mmap() family of 
system calls to map files into memory or write blocks of memory 
out to disk, use of these calls is quite limited. That’s an unfor-
tunate result of the UNIX “f lat” memory model, in which the 
program’s code, data stack, and any “extra” information can all  
be accessed using the same pointers.

Because UNIX processes only have access to that single f lat 
address space, files mapped into memory might be mapped into 
a different location each time a program runs—and it certainly is 
mapped into different locations when run in different programs. 

This isn’t a problem when code is mapped into memory, as is the 
case with shared libraries, because most shared code is compiled 
as position independent code (PIC). 

Loading nondeterministically into different regions of memory 
is a big problem when loading data, however. After all, the whole 
reason to map a disk file into memory is speed. But if the program 
can’t guarantee where the file is going to land, then the program 
will need to resort to using indirect memory accesses and vari-
ous kinds of pointer arithmetic to find every data object. Such 
approaches are now so well-established that we accept them 
without much thought, but having to mediate practically every 
memory reference with pointer arithmetic can have a significant 
performance impact. 

The f lat memory space of modern operating systems also has 
security and reliability implications: many security problems 
of the last three decades ultimately result from the fact that a 
(char *) pointer in the C programming language can effectively 
reference any part of the executing program’s data, stack, or code.

Multics Files Are Segments 
Many of the ideas that make UNIX and Linux great were devel-
oped for Multics, the project started in 1965 by MIT’s Project 
MAC, Bell Telephone Laboratories, and General Electric Com-
pany’s Large Computer Products Division [4]. For example, the 
very idea of a single tree-structured, hierarchical file system 
holding all of the system’s programs and user files was invented 
for Multics. Also invented for Multics is the idea that the com-
mand processor—the Multics creators called it a shell—would 
be a normal user program, and that commands would be imple-
mented as programs sitting in the file system rather than making 
commands a privileged part of the operating system. 

Files certainly existed at the time that the Multics project 
started, as did virtual memory, which was invented in 1962 for 
the Atlas computer at the University of Manchester. But Multics 
unified files and memory in a way that was not widely adopted. 

On Multics, files are simply pieces of memory that are given 
names in the hierarchical file system. Multics uses the word 
segments to describe these pieces of memory. 

A Multics process might have hundreds of segments mapped 
into memory at any given time. When segments are mapped 
into a process context—called loading—the segment’s symbolic 
file system name is mapped to a segment number. Pointers are 
confined within a segment. Corbató and Vyssotsky’s paper from 
the 1965 Fall Joint Computer Conference [5] describes this as 
“two-dimensional” addressing. Segments make it easy to provide 
for the secure sharing of code and data between users, because a 
single segment can be accessed concurrently by any number of 
processes, while the underlying hardware controls whether an 
individual process can read or write to each specific segment.
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Multics ran on the GE-645, a computer created for the purpose of 
running Multics. The actual hardware is somewhat odd by cur-
rent standards. The GE-645 had a 15-bit segment number and an 
18-bit offset to a word within the segment; the underlying system 
used 36-bit words, divided into four 9-bit “bytes.” This machine 
still runs today, albeit in emulation. You can log into a community 
Multics system and try it out at https://www.ban.ai/multics/. 

Segments neatly circumvent the problems of shared, persistent 
memory: with two-dimensional pointers (segment and offset), 
the offset of an individual datum doesn’t change when it is 
mapped out and mapped back in. This means that Multics didn’t 
need to use position independent code, didn’t need to relocate 
code when it was loaded into memory, and allowed code to be 
shared between executing programs, which meant that only a 
single copy of each library needed to be loaded into memory—
something that wasn’t widely available in the UNIX world until 
the 1990s.

Intel tried to implement segments on the iAPX 432 in 1975, but 
the project was overly ambitious and ran late. So instead, the 
company focused on the 8086, a 16-bit version of its successful 
8080 microprocessor. Launched in 1978, the 8086 has just four 
“segment” pointers—the code segment, the data segment, the 
stack segment, and the “extra” segment—and a 20-bit address is 
computed by taking a 16-bit segment number, shifting it to the 
left 4 bits, and adding the offset. That is, segments were a tool for 
extending memory from 64 KiB to 256 KiB, but not for managing 
data, shared libraries, or implementing memory protection. 

The modern x64 architecture still has these CS, DS, ES, and 
SS pointers, but they are all set to 0 (zero) to create a flat 64-bit 
memory space. Now 64 bits is a lot of addressable memory, and 
we could use some of them for some kind of virtual segment num-
ber, but on today’s hardware only 48 bits of the address pointers 
are used: take away 16 bits for a segment number, and that leaves 
only 32 bits for an offset within a segment. So it might be possible 
to implement something like Multics segments on modern hard-
ware, but it ultimately won’t deliver the same security properties 
that Multics did because Multics segment/offset pointers simply 
could not overflow into the next segment. Still, a segmented 
memory model might be an improvement over what we have 
today—provided that the segments were large enough. 

The Next File
The idea of saving memory in named segments may be com-
ing back into vogue with the advent of so-called storage-class 
memory (SCM). This memory is a lot like the magnetic core 
memory of the 1950s and ’60s in that it is directly addressable 
from the CPU and doesn’t forget its contents when it is turned 
off. It’s faster than disk and more expensive per byte than disk or 
flash, but slower and less expensive per byte than DRAM. 

One such memory system currently on the market is Optane, 
manufactured by Micron for Intel. You can buy Optane packaged 
on a DIMM module or as a PCIe card that looks like a SSD. Plug 
it into a DIMM slot, and Optane looks like slow memory that 
doesn’t get reset after restart—but be careful, because your sys-
tem’s power-on self-test (POST) might wipe it unless the POST 
is programmed not to do so. Plug Optane into a PCIe slot, and it 
looks like an incredibly fast, but small, SSD. 

SCM memory is here today, and it might open up a lot of pos-
sibilities if people would simply use it. For example, you can buy 
today a server with 24 DIMM slots and give it 12 2-TiB Optane 
modules, for 24 TiB of non-volatile memory, and 12 128-GiB 
DDR4 modules, for 1.5 TiB of main memory. You could use such 
a system to build a massive database server: keep the index and 
transaction log in the 24 TiB Optane storage, and you won’t need 
to flush the index to disk when the server shuts down and read 
it into memory when the server starts up. Bailey, Ceze, Gribble, 
and Levy explored other ideas for using SCM in their 2011 HotOS 
XIII paper, “Operating System Implications of Fast, Cheap, 
Non-Volatile Memory”[6]. Meanwhile, Yang, Kim, Hoseinzadeh, 
Izraelevitz, and Swanson explore the performance of Optane in 
their FAST ’20 paper, “An Empirical Guide to the Behavior and 
Use of Scalable Persistent Memory” [7].
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