
www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  67

COLUMNS

SIGINFO
Everything Is a Punch Card

S I M S O N L . G A R F I N K E L

Simson L. Garfinkel is a senior
computer scientist at the US
Census Bureau and a researcher
in digital forensics and usability.
He recently published The

Computer Book (Sterling, 2019), a coffee table
book about the history of computing.
sigmail@simson.net

It’s commonly said that in UNIX, “everything is a file.”
The meaning of this catchy aphorism is that most UNIX resources can be accessed
using names in the file system with a small, consistent set of function calls. So not only

can we open(), read(), and eventually close() regular files like /etc/motd and /bin/ls, we
can read the contents of the hard drive (if you have suitable permissions) by opening /dev​
/disk0, the first physical disk on a Macintosh, and even /dev/mem, the Linux “device” that lets
user processes read system memory.

In this column I’ll look at the origins of files and file systems, and contrast the UNIX approach
with a subtly different approach that was developed for the Multics operating system, in which
files are actually named segments in a two-dimensional memory address space. On Multics,
saving a “file” was really creating a named memory segment and then persisting it to long-
term storage. Finally, I’ll look at how the idea of named persistent memory segments backed
by non-volatile memory is making a comeback and will likely be an important part of the stor-
age stack in the near future.

The Historical File
Back in the 1500s a fyle was a string or wire used to bind together paper documents, or so
reports the Oxford English Dictionary: “Thapothecaries shall kepe the billis that they serue,
vpon a fyle” (1525). Also spelled file, by 1600 the word was used variously to denote the docu-
ments in a legal proceeding; a catalog, list, or roll; or even the figurative thread of a person’s life.

Put simply, English has had a difficult relationship with the word “file” since the beginning.
Sometimes the word refers to the case or container for organizing physical embodiments of
information, sometimes it refers to the objects put into that container, and sometimes it refers
to the information itself.

Although these days most information that’s stored in files is video, when I think of a “file” on
my computer, I typically think of a text file. That is, I think of a collection of lines, each some-
where between 1 and 80 characters long, separated by some kind of “end-of-line” character.
And for this I have to thank Herman Hollerith and the company he created, The Tabulating
Machine Company.

Hollerith graduated from Columbia University in 1879 and took a job working for one of his
professors, William P. Trowbridge, who had just taken a temporary assignment working
on the 1880 Census in Washington, DC, where he was compiling statistics on power and
machinery used in manufacturing. Looking back, this wasn’t very surprising: by all accounts
Hollerith was a hard-working, brilliant, and ambitious fellow who frequently attracted the
mentorship of his older colleagues.

Once in Washington, DC, Hollerith met another future mentor, John Shaw Billings, a surgeon
who had become the director of the Army Surgeon General’s library after serving in the Civil
War. Billings was also working on the Census, where he was in charge of tabulating vital
statistics.

68    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
SIGINFO: Everything Is a Punch Card

The 1880 Census, also known as the 10th Census, was a massive
information operation. Census employees collected data from all
over the country and brought it to Washington, DC, where it was
manually processed according to many different criteria—a pro-
cess called tabulating—and eventually published. You can think
of this processing as a series of SQL SELECT statements with
suitable GROUP BY and WHERE clauses. The 10th Census used
computers as well, but they were all the human kind [1].

The Card File
Billings suggested that Hollerith create some kind of machine to
mechanize the laborious tabulation process. Perhaps Hollerith
could build a machine that counted notches on cards of paper,
Billings suggested, with each card representing a single person’s
demographic characteristics, like their age or sex? Hollerith
found this idea fascinating and eventually transferred to work
under Billings in the vital statistics division just to spend a few
months learning the job. When the work on the 10th Census
started winding down in 1881, Hollerith moved to Boston, where
he had been offered a teaching position at the Massachusetts
Institute of Technology.

When he wasn’t teaching, Hollerith experimented with ideas
for the census machine. Inventing was far more interesting to
Hollerith than teaching—he couldn’t stand the thought of teach-
ing the same course a second time—so he quit the Institute and
took a job back in Washington, DC as a patent examiner. But once
he learned the ins-and-outs of the US patent system, he quit that
job and became a full-time inventor, supporting himself by doing
patent work for others.

Hollerith’s first census machine patent application described a
machine with a long tape of paper and rows of holes represent-
ing each person, but Hollerith eventually returned to an idea
suggested by Billings. He built prototype machines and, with
Billings’ help, used them in vital statistics projects in Baltimore
and New York City.

The 11th Census had a competition for a machine to assist in
the tabulations: Hollerith’s machine was one of three tested.
Hollerith won the contract, supplied the tabulating equipment
for the 11th Census, and eventually incorporated The Tabulating
Machine Company in 1896. The company merged with its com-
petitors in 1911 to form the Computing-Tabulating-Recording
Company, which was renamed International Business Machines
in 1924.

The Hollerith cards used in the 1890 Census had 12 rows of 24
columns and were sized 65/8" by 33/4" so that they fit perfectly
inside boxes used to store paper money. When users needed
more storage per card, the space between the rows was reduced,
allowing the card to hold 45 columns. This still wasn’t enough
storage, so in 1928 IBM standardized on a card of 73/8" by 31/4"

with rectangular holes punched in 80 columns of 12 rows. That
was the final standard, and it had lasting influence. The IBM
3270 display terminal introduced in 1971 had an 80-character
wide screen, as did the IBM PC introduced in 1981. Indeed,
PEP 8—Style Guide for Python Code, last revised in August 2013,
recommends that source code not exceed 79 characters because
some editors wrap when the user tries to edit the last character
on an 80-character line.

Older readers may recall receiving punch card checks and utility
bills imprinted with the words “do not fold, spindle or mutilate.”
A spindle is a nasty spike pointed straight up and mounted on
a weight for holding papers. That is, a spindle is a fyle, and you
should avoid using a spindle to file your card file, because the
extra hole will be read as an error.

Larger punch cards were used for voter ballots in various parts
of the United States until the election of November 2000, after
which they were largely replaced due to concerns over their
usability and accuracy.

The Circular File
Punch cards were all the rage in information processing for more
than a half century. The US Social Security Administration had a
master card file sorted by each person’s nine-digit social security
number. It had another set of punch cards sorted according to
the phonetic code of each person’s surname. Chrysler had punch
cards for its inventory control system. Grades from standard-
ized exams were punched onto cards [2], making it easier for
researchers to compute statistics. Really, almost every bit of
information that was needed for later processing was stored on
punch cards. Even though early computers had magnetic tape,
data on tapes was frequently loaded using high-speed punch
card readers, and put back onto cards for long-term storage after
processing.

In 1956, IBM announced the IBM 305 RAMAC, the Random
Access Memory Accounting System. The system’s breakthrough
technology was the IBM 350, the world’s first commercial hard
drive. There were 50 metal disks, each with 100 concentric
tracks, and a moving read/write-head assembly. The whole
thing could store five million 6-bit characters, or 3.75MB. The
base system rented for $3,200/month, of which $650 was for
the disk storage unit. IBM sold more than a thousand of these
vacuum tube-based computers until 1961, when the line was
discontinued.

Programming the 305 was complicated: not only was there nothing
resembling a modern file system, the program itself had to include
pauses to allow the RAMAC’s disks to rotate into the appropriate
position and for the head to complete any required seek operations.
When I downloaded and read the 1957 manual [3], I was most
surprised by the matter-of-fact way that IBM described the 305.

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  69

COLUMNS
SIGINFO: Everything Is a Punch Card

It’s not a general-purpose computer that has a first-in-the-world
megabyte-sized random access memory: it’s a system designed
for the specific task of helping companies automate inventory,
billing, and accounts receivable. That is, it’s an electronic punch
card file! The big paradigm shift that the manual tries to convey
to the reader is that idea that “files are located in the machine,”
—emphasis in the original—rather than in some external box.

Old paradigms die hard.

On UNIX, Everything Is a File
Modern UNIX and Linux owes much of its flexibility to the
way that the operating system handles files and file systems.
While other operating systems maintain a different namespace
for every physical device, UNIX puts everything into a single
hierarchy, a single unified naming system for all files currently
accessible.

The second advantage of the “everything is a file” approach
manifests when programs running on UNIX get a “file” to open
and, lo, it’s actually the name of a device. Most UNIX programs
will still work, provided that the calling process has the correct
authorization to open the file.

This ability to treat devices as files extends to pseudo-devices
like /dev/stdin, /dev/stdout, and /dev/tty, which map to stdin,
stdout, and the controlling terminal of the current process. For
example, while some programs like wc will take their input from
stdin if no input file is provided, other programs will only take
their input from “files.” You can give these programs /dev/stdin
as their input file and then put them into a shell pipeline, like a
properly written UNIX program.

Recently, I had a program that decided what file type it was read-
ing by looking at the file’s extension. I wanted the program to
read its input from a pipe. My solution was to create symbolic in
/tmp with the appropriate extension, point the link at /dev/stdin,
and give the program the link for its input. Convoluted, perhaps,
but the hack worked the first time.

Another thing that is obviously not a file is memory. Yes, Linux
systems have devices like /dev/mem and /dev/kmem that let
programs access memory through the file system, but memory is
not file. And although UNIX and Linux have the mmap() family of
system calls to map files into memory or write blocks of memory
out to disk, use of these calls is quite limited. That’s an unfor-
tunate result of the UNIX “f lat” memory model, in which the
program’s code, data stack, and any “extra” information can all
be accessed using the same pointers.

Because UNIX processes only have access to that single f lat
address space, files mapped into memory might be mapped into
a different location each time a program runs—and it certainly is
mapped into different locations when run in different programs.

This isn’t a problem when code is mapped into memory, as is the
case with shared libraries, because most shared code is compiled
as position independent code (PIC).

Loading nondeterministically into different regions of memory
is a big problem when loading data, however. After all, the whole
reason to map a disk file into memory is speed. But if the program
can’t guarantee where the file is going to land, then the program
will need to resort to using indirect memory accesses and vari-
ous kinds of pointer arithmetic to find every data object. Such
approaches are now so well-established that we accept them
without much thought, but having to mediate practically every
memory reference with pointer arithmetic can have a significant
performance impact.

The f lat memory space of modern operating systems also has
security and reliability implications: many security problems
of the last three decades ultimately result from the fact that a
(char *) pointer in the C programming language can effectively
reference any part of the executing program’s data, stack, or code.

Multics Files Are Segments
Many of the ideas that make UNIX and Linux great were devel-
oped for Multics, the project started in 1965 by MIT’s Project
MAC, Bell Telephone Laboratories, and General Electric Com-
pany’s Large Computer Products Division [4]. For example, the
very idea of a single tree-structured, hierarchical file system
holding all of the system’s programs and user files was invented
for Multics. Also invented for Multics is the idea that the com-
mand processor—the Multics creators called it a shell—would
be a normal user program, and that commands would be imple-
mented as programs sitting in the file system rather than making
commands a privileged part of the operating system.

Files certainly existed at the time that the Multics project
started, as did virtual memory, which was invented in 1962 for
the Atlas computer at the University of Manchester. But Multics
unified files and memory in a way that was not widely adopted.

On Multics, files are simply pieces of memory that are given
names in the hierarchical file system. Multics uses the word
segments to describe these pieces of memory.

A Multics process might have hundreds of segments mapped
into memory at any given time. When segments are mapped
into a process context—called loading—the segment’s symbolic
file system name is mapped to a segment number. Pointers are
confined within a segment. Corbató and Vyssotsky’s paper from
the 1965 Fall Joint Computer Conference [5] describes this as
“two-dimensional” addressing. Segments make it easy to provide
for the secure sharing of code and data between users, because a
single segment can be accessed concurrently by any number of
processes, while the underlying hardware controls whether an
individual process can read or write to each specific segment.

70    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

COLUMNS
SIGINFO: Everything Is a Punch Card

Multics ran on the GE-645, a computer created for the purpose of
running Multics. The actual hardware is somewhat odd by cur-
rent standards. The GE-645 had a 15-bit segment number and an
18-bit offset to a word within the segment; the underlying system
used 36-bit words, divided into four 9-bit “bytes.” This machine
still runs today, albeit in emulation. You can log into a community
Multics system and try it out at https://www.ban.ai/multics/.

Segments neatly circumvent the problems of shared, persistent
memory: with two-dimensional pointers (segment and offset),
the offset of an individual datum doesn’t change when it is
mapped out and mapped back in. This means that Multics didn’t
need to use position independent code, didn’t need to relocate
code when it was loaded into memory, and allowed code to be
shared between executing programs, which meant that only a
single copy of each library needed to be loaded into memory—
something that wasn’t widely available in the UNIX world until
the 1990s.

Intel tried to implement segments on the iAPX 432 in 1975, but
the project was overly ambitious and ran late. So instead, the
company focused on the 8086, a 16-bit version of its successful
8080 microprocessor. Launched in 1978, the 8086 has just four
“segment” pointers—the code segment, the data segment, the
stack segment, and the “extra” segment—and a 20-bit address is
computed by taking a 16-bit segment number, shifting it to the
left 4 bits, and adding the offset. That is, segments were a tool for
extending memory from 64 KiB to 256 KiB, but not for managing
data, shared libraries, or implementing memory protection.

The modern x64 architecture still has these CS, DS, ES, and
SS pointers, but they are all set to 0 (zero) to create a flat 64-bit
memory space. Now 64 bits is a lot of addressable memory, and
we could use some of them for some kind of virtual segment num-
ber, but on today’s hardware only 48 bits of the address pointers
are used: take away 16 bits for a segment number, and that leaves
only 32 bits for an offset within a segment. So it might be possible
to implement something like Multics segments on modern hard-
ware, but it ultimately won’t deliver the same security properties
that Multics did because Multics segment/offset pointers simply
could not overflow into the next segment. Still, a segmented
memory model might be an improvement over what we have
today—provided that the segments were large enough.

The Next File
The idea of saving memory in named segments may be com-
ing back into vogue with the advent of so-called storage-class
memory (SCM). This memory is a lot like the magnetic core
memory of the 1950s and ’60s in that it is directly addressable
from the CPU and doesn’t forget its contents when it is turned
off. It’s faster than disk and more expensive per byte than disk or
flash, but slower and less expensive per byte than DRAM.

One such memory system currently on the market is Optane,
manufactured by Micron for Intel. You can buy Optane packaged
on a DIMM module or as a PCIe card that looks like a SSD. Plug
it into a DIMM slot, and Optane looks like slow memory that
doesn’t get reset after restart—but be careful, because your sys-
tem’s power-on self-test (POST) might wipe it unless the POST
is programmed not to do so. Plug Optane into a PCIe slot, and it
looks like an incredibly fast, but small, SSD.

SCM memory is here today, and it might open up a lot of pos-
sibilities if people would simply use it. For example, you can buy
today a server with 24 DIMM slots and give it 12 2-TiB Optane
modules, for 24 TiB of non-volatile memory, and 12 128-GiB
DDR4 modules, for 1.5 TiB of main memory. You could use such
a system to build a massive database server: keep the index and
transaction log in the 24 TiB Optane storage, and you won’t need
to flush the index to disk when the server shuts down and read
it into memory when the server starts up. Bailey, Ceze, Gribble,
and Levy explored other ideas for using SCM in their 2011 HotOS
XIII paper, “Operating System Implications of Fast, Cheap,
Non-Volatile Memory”[6]. Meanwhile, Yang, Kim, Hoseinzadeh,
Izraelevitz, and Swanson explore the performance of Optane in
their FAST ’20 paper, “An Empirical Guide to the Behavior and
Use of Scalable Persistent Memory” [7].

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  71

COLUMNS
SIGINFO: Everything Is a Punch Card

References
[1] For a brief description of the use of human computers in
the 10th Census, see https://bit.ly/slg-100. For a more detailed
study, see David Alan Grier’s excellent book on the subject,
When Computers Were Human (Princeton University Press,
2005).

[2] To learn more about the use of punch cards in the testing of
Indian children, see K. E. Anderson, E. G. Collister, and C. E.
Ladd, The Educational Achievement of Indian Children: A Re-
Examination of the Question: How Well Are Indian Children Edu-
cated? (Bureau of Indian Affairs, 1953). https://bit.ly/slg-101.

[3] It’s not hard to find IBM RAMAC 305 manuals online. My
favorite is http://ed-thelen.org/comp-hist/22-6264-1-IBM-305​
-RAMAC-ManualOfOperation.pdf.

[4] For more information about Multics, see https://multicians​
.org/history.html.

[5] F. J. Corbató, and V. A. Vyssotsky, “Introduction and Over-
view of the Multics System,” in Proceedings of the November
30—December 1, 1965, Fall Joint Computer Conference, Part I,
pp. 185-196: https://www.multicians.org/fjcc1.html.

[6] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating
System Implications of Fast, Cheap, Non-Volatile Memory,”
in Proceedings of 13th Workshop on Hot Topics in Operating
Systems (HotOS XIII), 2011: https://www.usenix.org/legacy​
/events/hotos11/tech/final_files/Bailey.pdf.

[7] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swan-
son, “An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory,” in Proceedings of 18th USENIX Conference
on File and Storage Technologies (FAST ’20): https://www​
.usenix.org/conference/fast20/presentation/yang.

2020 USENIX Conference on Privacy
Engineering Practice and Respect

OCTOBER 15–16, 2020 • VIRTUAL EVENT
PEPR is focused on designing and building products and systems with privacy and respect for their
users and the societies in which they operate. Our goal is to improve the state of the art and practice
of building for privacy and respect and to foster a deeply knowledgeable community of both privacy
practitioners and researchers who collaborate towards that goal.

www.usenix.org/pepr20

PROGRAM CO-CHAIRS

Lorrie Cranor
Carnegie Mellon University

Lea Kissner
Apple

View the program and register today!

https://bit.ly/slg-100
https://bit.ly/slg-101
http://ed-thelen.org/comp-hist/22-6264-1-IBM-305-RAMAC-ManualOfOperation.pdf
http://ed-thelen.org/comp-hist/22-6264-1-IBM-305-RAMAC-ManualOfOperation.pdf
https://multicians.org/history.html
https://multicians.org/history.html
https://www.multicians.org/fjcc1.html
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang

