
www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  77

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Bad Choices: How Algorithms Can Help You Think
Smarter and Live Happier
Ali Almossawi
Penguin Random House LLC, 2017, 146 pages
ISBN 978-0-7352-2212-0

Reviewed by Mark Lamourine

In the Summer 2020 issue I reviewed Ali Almossawi’s first book,
in its online and print editions, Bad Arguments. That was a book
about logic and logical fallacies, a subject that is always timely.
It led me to his second book, Bad Choices, about algorithms and
how we can use them in daily life. This serves two purposes. The
superficial goal is to show how algorithmic thinking can make
ordinary tasks more efficient and effective. But the real goal,
more subtle and subversive, is to show that the concepts of pro-
gramming and computation aren’t as abstract and alien as they
seem when presented in the classroom. We use algorithms every
day, and, with just a little attention paid, we can see how pretty
much all computation matches problem-solving activities from
everyday life.

Almossawi starts each chapter with a little anecdote about a
character whose name is a bad pun and who has some task to
accomplish. The tasks range from sorting socks to finding all
the items on a grocery list while visiting the minimum number
of different aisles. He presents each vignette with a statement of
the objective and two or three methods of trying to accomplish
the task, and then the fun begins.

The veneer of a picture book or a children’s story slips away pretty
quickly. In the first chapter, he introduces the idea of algorithmic
complexity based on the relationship between the size of the job
and the time needed to complete the task. He doesn’t go deep into
the math but presents the growth curves and the concepts of
polynomial and logarithmic growth. These are sprinkled through
the remaining chapters for comparison. Later chapters cover the
ideas behind arrays, associative arrays, hash functions, quick
sort, and binary trees, among others.

The first seven chapters of Bad Choices are online at https://​
bookofbadchoices​.com/. The first page is even read by Almos-
sawi’s son, I think. The presentation is very faithful to the book,
down to the graphical page-turn transitions. If you’re trying to
decide if you want to buy a hard copy for someone, it’s an excel-
lent facsimile.

The bad choices of the title are the obvious ways that we do small
tasks. For the typical size of daily chores, things like bubble sort
or exhaustive search of a clothes rack for the right shirt size pose

no real problem. Almossawi uses them to present alternatives
and introduce in an informal way the most common algorithms
used in computer science. It won’t make anyone a program-
mer, and it won’t teach a software developer anything they don’t
already know. But it might help demystify the idea of algorithms
for someone who wants to get more comfortable with computa-
tion, and it might even help them sort socks or craft a clever tweet.

The Skeptics’ Guide to the Universe: How to Know
What’s Really Real in a World Increasingly Full
of Fake
Steven Novella, with Bob Novella, Cara Santa Maria,
Jay Novella, and Evan Bernstein
Grand Central Publishing, 2019, 528 pages
ISBN 978-1-5387-6052-9

Reviewed by Mark Lamourine

I think the authors of The Skeptics’ Guide must see the irony in
the fact that their book is a self-help guide, though I don’t expect
you’ll find it in that section of a book store. In a time of industrial-
scale misinformation, the skills needed to evaluate what you
see and hear and read must be actively taught and learned. Even
more important may be the knowledge of how we as humans can
be deceived or deliberately deceive ourselves. You have to want
to learn and be willing to let go of what you want to believe if you
want to grow.

The Skeptics’ Guide to the Universe is the collected wisdom of
the hosts of a podcast of the same name. They have been working
together since 2005. They created and run the Northeast Confer-
ence on Science and Skepticism (NECSS). I have been listening
to the podcast for several years, and I admit I am a fan.

The core of the book is the idea of scientific skepticism, which is
not to be confused or dismissed as philosophical skepticism. The
latter is the idea that nothing can be known or trusted. Scientific
skepticism is an approach to understanding in which one accepts
that learning is possible but that it is a matter of refinement. It is
the idea that while one can never achieve certainty, it is possible
to approach it in a way that allows one to act in the face of incom-
plete understanding. The ability to give up a cherished idea in the
face of evidence is the most important tenet.

Each of the chapters in the book is fairly short, from two to ten
pages at most. They are meant as an introduction to a topic and
an invitation to learn more. Each chapter is backed by references
that the reader can use to go into a topic in more depth.

https://bookofbadchoices.com/
https://bookofbadchoices.com/

78    FA L L 2020  VO L . 45 , N O. 3 	 www.usenix.org

BOOKS

Curiously, there is almost nothing in the book telling the reader
what to believe. In the main section of the book, Novella talks
about the ways in which we as humans can mistake the world.
First he discusses the realm of illusion and the failure of human
intuition. Recent research into the malleability of memory and
recall, the mind’s ability to see patterns where they don’t exist,
the meanings attributed to dream and near dream experiences
all can inform our response to seeing something strange or
apparently inexplicable. It can lead us to question our certainty
in our memories and experiences, at least enough to withhold
judgment without confirmation.

Novella proceeds to talk about how to think about what we per-
ceive and how we interpret it. This process is known as meta-
cognition. It’s easy to dismiss the idea of metacognition as “navel
gazing,” but that’s actually the point. Those who would dismiss it
would cite what they call common sense. This section is a list of
the ways in which “common sense” isn’t.

This isn’t a way in which “people are stupid.” The first chapter
in this section is on the Dunning-Kruger effect, but if there’s
any takeaway it’s that this applies to everyone, depending on the
topic. A well-educated, intelligent person needs to always be on
guard because it is easy for anyone to assume that, since they
are expert in one field, they are qualified to evaluate and speak
about another. The overriding message of this section is that one
needs to be constantly aware of the possibility of being mistaken,
especially when you are confident that you are not.

Additional chapters in this section cover motivated reasoning,
formal logical fallacies, and some of the more common informal
fallacies such as appeal to nature, misinterpreting statistics, or
believing coincidence is more than coincidental. In each case,
the purpose is to help the reader understand the human tendency
toward misperception and how to recognize and correct for it.

In the remainder of this section, Novella covers recognizing the
characteristics of pseudo-science and understanding a set of les-
sons from history. Both groupings contain examples of deliberate
hoaxes, honest mistakes, and systemic failures.

The final two sections finally begin to talk about what a reader
can do to address misinformation in the media and in life. Today
we have access to far more information than we can possibly
digest individually. We have to learn to evaluate the sources and
our own responses to determine how to use what we get to form
a view of the world. The point is never to arrive at certainty, but
to create a level of understanding and confidence that allows us
to act reasonably. This is always a provisional understanding,
and it is assumed that we will continue to learn and refine this
view, sometimes even rejecting previously held ideas if new data
changes our understanding. Those familiar with Bayesian statis-
tics will be familiar with this idea. When our worldview changes,
we can change our behavior to match.

Taken as a whole, The Skeptics’ Guide is a collection of things to
note and to keep in mind when taking in the news of the world
and trying to make sense of it for everyday life. It holds a number
of cautionary tales, but the message is always one of optimism.
It is possible to learn and to act reasonably in our society, but it
takes some care and self-discipline. It’s also possible to recognize
don’t care conditions, where you can let your guard down and
relax. Not every topic needs skeptical scrutiny.

This book is not going to convert anyone from a closely held ideol-
ogy. The nature of human identity means that we don’t change
who we are easily or quickly. For someone who is confused by the
current torrent of input and wants some ideas about how to try to
process it without becoming cynical or nihilistic, The Skeptics’
Guide to the Universe is a great start.

Re-Engineering Legacy Software
Chris Birchall
Manning Publications Co., 2016, 214 pages
ISBN 978-1-61729-250-7

Reviewed by Mark Lamourine

In my experience, software developers are prone to producing
crap. It’s not all our fault. It’s a factor of the limitations on money,
time, and sometimes attention and patience. Tasks like writ-
ing code and running tests repeatedly aren’t the most exciting
aspects of coding. Regardless of the reason, there’s a lot of code
out there that meets Birchall’s criteria for “legacy software.”

The title of the book belies the scope of Birchall’s ambitions. His
focus is on refactoring the entire process of software develop-
ment. I’ve read and reviewed a number of books that go into depth
on the facets of modern software engineering processes. There
are books about revision control, automated testing and build
processes, and agile planning methods. The Practice of System
and Network Administration [1] and Refactoring [2] are classics,
but the first is a general-purpose tome defining the ideals of
the industry, and the second is a tightly focused exposition of a
neglected facet of the software development process. Each has a
place, and both can be daunting to someone looking for an over-
view that touches on all the needed topics but leaves the details
and depth for another time. Re-Engineering Legacy Software
tries to fill that gap.

In the first half of the book, Birchall does concentrate on the code
base and he does start with basic refactoring, but he doesn’t stop
there. In the next two chapters he expands to reworking software
architecture and then again to the considerations of a complete
rewrite. He doesn’t advocate for either method as a means to
reach a more maintainable design. His approach is to look at the
factors that would inf luence the decision to implement either
an incremental or bulk replacement of an existing code base. He
leaves it to readers to evaluate their own situations.

www.usenix.org	   FA L L 2020  VO L . 45 , N O. 3  79

BOOKS

It is in the second half that he moves on to the design of, not the
software, but the software development environment and pro-
cesses. These are aspects that I think are often either neglected
or that slavishly adhere to some ideology that may not take into
account the specific needs of the team, the customer, or the proj-
ect. Birchall discusses the common modern techniques of auto-
mated testing, continuous development, and delivery, but with a
view to adding them to a project where they are not currently in
use. He clearly is an advocate of modern practices, and he brings
an agile view to implementing them in existing environments.
The focus is again on incremental improvement, not on wholesale
replacement, though he does discuss times where that might be
the best course.

The final section covers project management and software
development culture. Here he echoes in brief the messages of
The DevOps Handbook [3] and The Phoenix Project [4]. These are
the classic works on modern software development process and
culture. Birchall glosses over the types of cultural and personal
pressures that can lead to wasting time on precious features, or
alternatively, the mistaken avoidance of writing throwaway code
to allow for incremental improvement.

Re-Engineering Legacy Software won’t replace any of the old
favorites on my book shelf. On the other hand, I would recom-
mend it to someone entering software project management cold
or approaching a legacy project for the first time. Birchall makes
a subject that can be the focus of ideological wars and pet soft-
ware tools accessible without a lot of the hype and heat that have
been present over the last decade or so. The flip side of “fail fast”
is “one bite at a time,” and Birchall’s book is bite-sized.

IT Architect Series: Stories from the Field
Matthew Wood, John Yani Arrasjid, and Mark Gabryjelski
IT Architect Resource, LLC, 2020, 270 pages
ISBN: 978-0-9990929-1-0

Reviewed by Rik Farrow

In the preface of this ebook, John Arrasjid writes that the stories
are supposed to be both informative and entertaining. I can agree
with John’s statement, as I learned things from reading about the
misfortunes of others, but also found myself often entertained at
the same time.

Stories from the Field begins with a long preface, including a clas-
sification scheme for categorizing the stories, using terms like
Analysis, Communication, Politics, Database, and Risk. As I just
read straight through, the categories really didn’t make any dif-
ference to me, but at least hinted at what I’d soon be reading.

The stories themselves are written by 35 contributors, presum-
ably all IT architects. I wasn’t familiar with “IT architect” as a
job description, but learned as I read that this person works with
a team to design large scale distributed systems for some business
purpose. Most of the team works for a company that does installa-
tions, often called a partner but what in the past might have been
called a VAR. The team includes people who handle the business
side of the project, but also technologists like programmers and
network engineers working beside the IT architect.

The stories roughly follow a pattern where the project is described,
and this is where I learned about the protocols for designing
these projects as well as the systems and software used in cur-
rent IT departments. There are lots of references to VMware
products, and the acronyms used for different types of offer-
ings, like virtual desktop infrastructure (VDI), cloud computing
hypervisor (vSphere), and the VMware Enterprise hypervisor
(ESXi) took some getting used to. Note that this is not a technical
book and is not specific to VMware, but VMware products are
often involved in the stories.

Each story ends with lessons learned, and after a while I became
familiar with the patterns of failure. Most common were failures
in communication that led to misunderstandings, but almost as
common were mission creep, although sometimes the creep was
more like a leap, as customers would suddenly decide on install-
ing the just-released version of a major release or have purchased
different, and usually cheaper, equipment. There are things that
an SRE would find more familiar, such as failure to determine all
dependencies until a server fails, and turns out to be the keystone
in an entire system.

Overall, I enjoyed reading Stories, as the stories themselves are
short, informative, and generally fun to read. And, honestly, I
felt glad that it was somebody else who had to live through the
misadventures.

References
[1] T. Limoncelli, C. J. Hogan, and S. R. Chalup, The Practice
of System and Network Administration, 3rd edition (Addison-
Wesley Professional, 2016).

[2] M. Fowler, Refactoring, 2nd edition (Addison-Wesley
Professional, 2018).

[3] G. Kim, J. Humble, P. Dubois, J. Willis, and J. Allspaw,
The DevOps Handbook (IT Revolution Press, 2016).

[4] K. Behr, G. Spafford, and G. Kim, The Phoenix Project,
5th Anniversary edition (IT Revolution Press, 2018).

F E B 1 – 3 , 2 0 2 1
OA K L A ND, C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The full program and registration will be available in November.

SECURITY AND PRIVACY IDEAS THAT MATTER
Enigma centers on a single track of engaging talks covering a wide range of topics in security and
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection

of society and technology, and to foster an intelligent and informed conversation within the
community and the world. We view diversity as a key enabler for this goal and actively work to

ensure that the Enigma community encourages and welcomes participation from all employment
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations,

and all talk media is available to the public after the conference.

PROGRAM CO-CHAIRS

Daniela Oliveira
University of Florida

Lea Kissner
Apple

We are looking for people with personal experience and
expertise who want to share their knowledge by writing.
USENIX supports many conferences and workshops, and
articles about topics related to any of these subject areas
(system administration, programming, SRE, file systems, stor-
age, networking, distributed systems, operating systems, and
security) are welcome. We will also publish opinion articles
that are relevant to the computer sciences research commu-
nity, as well as the system adminstrator and SRE communities.

Writing is not easy for most of us. Having your writing rejected,
for any reason, is no fun at all. The way to get your articles
published in ;login:, with the least effort on your part and on
the part of the staff of ;login:, is to submit a proposal to
login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new.
If you plan on writing a book, you need to write one chapter,
a proposed table of contents, and the proposal itself and
send the package to a book publisher. Writing the entire book
first is asking for rejection, unless you are a well-known, pop
ular writer.

;login: proposals are not like paper submission abstracts. We
are not asking you to write a draft of the article as the pro-
posal, but instead to describe the article you wish to write.
There are some elements that you will want to include in
any proposal:

•	What’s the topic of the article?

•	�What type of article is it (case study, tutorial, editorial,
article based on published paper, etc.)?

•	�Who is the intended audience (syadmins, programmers,
security wonks, network admins, etc.)?

•	Why does this article need to be read?

•	�What, if any, non-text elements (illustrations, code,
diagrams, etc.) will be included?

•	What is the approximate length of the article?

Start out by answering each of those six questions. In answer-
ing the question about length, the limit for articles is about
3,000 words, and we avoid publishing articles longer than six
pages. We suggest that you try to keep your article between
two and five pages, as this matches the attention span of
many people.

The answer to the question about why the article needs to be
read is the place to wax enthusiastic. We do not want market-
ing, but your most eloquent explanation of why this article is
important to the readership of ;login:, which is also the mem-
bership of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are
not limited to:

•	�Previously published articles. A piece that has appeared
on your own Web server but has not been posted to
USENET or slashdot is not considered to have been
published.

•	�Marketing pieces of any type. We don’t accept articles
about products. “Marketing” does not include being
enthusiastic about a new tool or software that you can
download for free, and you are encouraged to write case
studies of hardware or software that you helped install
and configure, as long as you are not affiliated with or
paid by the company you are writing about.

•	Personal attacks

FORMAT
The initial reading of your article will be done by people using
UNIX systems. Later phases involve Macs, but please send us
text/plain formatted documents for the proposal. Send pro
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown,
LaTeX, or Microsoft Word/Libre Office. Illustrations should
be PDF or EPS if possible. Raster formats (TIFF, PNG, or JPG)
are also acceptable, and should be a minimum of 1,200 pixels
wide.

DEADLINES
For our publishing deadlines, including the time you can
expect to be asked to read proofs of your article, see the
online schedule at www.usenix.org/publications/login
/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first
publication rights. USENIX owns the copyright on the collec-
tion that is each issue of ;login:. You have control over who
may reprint your text; financial negotiations are a private
matter between you and any reprinter.

Writing for ;login:

http://www.usenix.org/publications/login/publication_schedule
http://www.usenix.org/publications/login/publication_schedule

