
10  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE

Storage Options for Software Containers
M A R K L A M O U R I N E

Software containers are likely to become a very important tool over the
next few years. While there is room to argue whether or not they are
a new tool, it is clear that they have certain elements that are clearly

immature. Storage is one of those elements.

The problem isn’t that we need new storage services. The new factors are due to the charac-
teristics of containers themselves and how they differ from traditional bare-metal hosts and
virtual machines (VMs). Also, storage isn’t an issue on single hosts where it can be mounted
manually for each individual container. Large container farms present problems that are
related to those for VM-based IaaS services but that are complicated by VMs’ lack of clean
boundaries.

There are two common container mechanisms in use today: LXC and Docker. LXC is the
older mechanism and requires careful crafting of the container environment, although it
also provides more control to the user. Creating LXC containers requires a significant level
of expertise. LXC also does not provide a simple means to copy and re-instantiate existing
containers.

Docker is the more recent container environment for Linux. It makes a set of simplifying
assumptions and provides tools and techniques that make creating, publishing, and consum-
ing containers much easier than it has ever been. This has made container technology much
more appealing than it was before, but current container systems only manage individual
containers on single hosts. As people begin trying to put containers and containerized appli-
cations to use at larger scales, the remaining problems, such as how to manage storage for
containers, are exposed.

In this article I’m going to use Docker as the model container system, but all of the observa-
tions apply as well to LXC and to container systems in general.

A Container Primer
The first thing to understand is that containers don’t contain [1]. A container is really a
special view of the host operating system that is imposed on one or more processes. The “con-
tainer” is really the definition of the view that the processes will see. In some senses they
are similar to chroot environments or BSD jails but the resemblance is superficial and the
mechanism is entirely different.

The enabling mechanism for Linux containers is kernel namespaces [2, 3]. Kernel name-
spaces allow the kernel to offer each process a different view of the host operating system.
For example, if a contained process asks for stat(3) for the root (/), the namespace will
map that to a different path (when seen by an uncontained process): for example, /var/lib

/docker/devicemapper/mnt/<ID>/rootfs/. Since the file system is hierarchical, requests for
information about files beneath the root node will return answers from inside the mapped
file tree.

Mark Lamourine is a senior
software developer at Red Hat.
He’s worked for the last few
years on the OpenShift project.
He’s a coder by training, a

sysadmin and toolsmith by trade, and an
advocate for the use of Raspberry Pi style
computers to teach computing and system
administration in schools. Mark has been a
frequent contributor to the ;login: book reviews.
markllama@gmail.com

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 11

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

In all *NIX operating systems, PID 1 is special. It’s the init
process that is the parent of all other processes on a host. In a
Docker container, there is a master process, but it is generally
not the system process. Rather, it may be a shell or a Web server.
But from inside the container, the master process will appear to
have PID 1.

There are six namespaces that allow the mapping of different
process resources [6]:

◆◆ mount—file systems

◆◆ UTS—nodename and domain name

◆◆ IPC—inter-process communication

◆◆ PID—process identification

◆◆ network—network isolation

◆◆ user—UID mapping

A process running “in a container” is, in fact, running directly on
the container host. All of the files it sees are actually files inside
the host file system. The “containment” of the process is an illu-
sion, but a useful one. This lack of the traditional boundaries is
what makes container storage management something new.

Software Container Farms and Orchestration
If all you want to do is run a single container on a single host
with some kind of storage imported, there’s no real problem. You
manually create or mount the storage you want, then import the
storage when you create the container. Both LXC and Docker
have means of indicating that some external file-system root
should be re-mapped to a new mount point inside the container.
When you want to create a container farm, where placement
of individual containers is up to the orchestration system, then
storage location becomes interesting. In a container farm, the
person who requests a new container only gets to specify the
characteristics, not the deployment location.

There are a number of container orchestration systems currently
under development. CoreOS is using a system called Fleet [3].
Google and Red Hat are working on Kubernetes [4]. Both have
slightly different focus and features but in the end they will both
have to create the environment necessary to run containers on
hosts that are members of a cluster. I think it’s too early to tell
what will happen in the area of container orchestration system
development even over the short term.

I’m not going to talk about how the orchestration systems will do
their work, I’m only going to talk about the flavors of storage they
will be called on to manage and the characteristics and implica-
tions of each. But first, let’s look at how Docker handles storage
without an orchestration system.

Docker Ephemeral Storage
When you ask Docker to create a container, it unpacks a collec-
tion of tar archives that together are known as the image. If no
external volumes are specified, then the only file tree mounted is
the unpacked image. Each of the running containers is unpacked
into /var/lib/docker/devicemapper/mnt/<ID>/rootfs where
<ID> is the container ID returned when the container is created
using the devicemapper driver. Different storage drivers will
have slightly different paths.

This is ephemeral storage in the sense that when the container
is deleted, the storage is reclaimed and the contents deleted (or
unmounted). This file tree is not shared with other containers.
Changes made by processes in the container are not visible to
other containers.

Docker Volumes—Shared and Persistent Storage
The Dockerfile VOLUME directive is used to define a mount
point in a container. It basically declares, “I may want to mount
something here or share something from here.” Docker can
mount different things at that point in response to arguments
when a container is created.

When you create a new Docker container from an image that
declares a volume, but you don’t provide an external mount point,
then the content below the volume mount point is placed in its
own directory within the Docker workspace (/var/lib/docker

/vfs/dir/).

Figure 1: The Docker VOLUME directive creates a mount point in the
container. The file tree below the mount point in the image is placed in a
separate space when the container is created. It can be exported to other
containers or imported either from a container or from external storage.

Figure 2: A container connected to an “internal” volume. This is created
by Docker as a default if no external volume is offered.

12  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

You can share this storage between containers on the same host
with the docker --volumes-from command line option. This
causes the declared volumes from an existing container to be
mounted on any matching volumes in the new container.

Shared storage using what’s known as a data container can
be treated as persistent across restarts of an application. The
application container can be stopped and removed and then
recreated or even upgraded. The data container will be available
to remount when the application is restarted.

This volume sharing will also work with host storage.

External Host Storage
In this case “external” means “from outside the container.”
When you start a Docker container, you can indicate that you
want to mount a file or directory from the host to a point inside
the container.

Host storage is useful when you are creating individual contain-
ers on a single host. You can create and manage the space on
the host that you’re going to mount inside before you start the
container. This gives you more control over the initialization of
the storage, and you can view and modify it easily from the host
while the application is running.

This becomes more difficult, though, when you start working
with a large container farm. The whole idea of container farms is
that all of the hosts are identical and that the containers can be
placed and moved to maintain the balance of the load within the
cluster. The only way to do that practically is to move the storage
off the container host entirely.

Containers, the mount(8) Command and
 Container Orchestration
I’ve mentioned the lack of the host boundary when managing
containers. The mount(8) command is where this appears for
storage. You can’t run mount(8) from inside a container without
special privileges. Since a container is just a special view of the
host, any file system mounted into a container must be mounted
onto the host before the container is started. In general, pro-
cesses inside containers are not given the privileges to affect
anything on the host outside the container. (If they can, they’re
not very well contained, are they?)

For similar reasons, Docker cannot cause the host to mount new
file systems, whether local or remote. Docker restricts itself to
controlling how the container sees the resources that the host
already has available. Docker manages individual containers on
single hosts. For large numbers of containers spread across mul-
tiple hosts, the orchestration system will have to provide a way
to connect storage to containers within the cluster. In the rest of
this article, I’ll talk about where the storage will come from.

Docker and the Host Boundary
At this point you’ve seen everything that Docker can do with
storage. Docker limits itself to using the resources available on
a host. Its job is to provide those resources to the interior of con-
tainers while maintaining the limited view the containers have
of the host outside. This means that Docker itself is unaware
of any containers on other hosts or of any other resource that
has not been attached to the host when the container is created.
Docker can’t make changes to the host environment on behalf of
a container.

This is where orchestration systems come in. A good orchestra-
tion system will have a way to describe a set of containers and
their interactions to form a complete application. It will have the
knowledge and means to modify the host environment for new
containers as they are created.

Network Storage
Most machines have block storage mounted directly on the host.
Network storage extends the reach of individual hosts to a larger
space than is possible with direct storage, and it allows for the
possibility of sharing storage between multiple hosts.

Figure 4: A container with host storage. The host storage is bind mounted
onto the container volume mount point.

Figure 3: Two containers sharing a volume. The volume is created by
Docker when the first container is created. The second container mounts
from the first using the --volumes-from option.

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 13

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

I’m going to group all of the traditional off-host storage services
under the umbrella of “network storage.” These include NAS,
SAN, and more modern network storage services. There are a
few differences.

NAS services like NFS, CIFS, and AFS don’t appear on the host
as devices. They operate using IP protocols on the same net-
works that carry the other host traffic. Their unit of storage is a
file (or directory). They generally don’t tolerate latency very well.
In their original form, NAS services don’t support distributed
files or replication. In most cases they don’t require a service
running on the client host to manage the creation of connections
or the file traffic. NAS services can be provided by specialized
appliances or by ordinary hosts running the service software.

There is a new class of distributed network services that provide
replication and higher performance than single-point NAS does.
Gluster and Ceph are two leading distributed NAS services. Cli-
ents run special daemons that distribute and replicate copies of
the files across the entire cluster. The files can either be accessed
on the client hosts or be served out over NFS to other clients.

SAN systems include Fibre Channel, InfiniBand, and iSCSI.
Fibre Channel and InfiniBand require special hardware net-
works and connections to the host. iSCSI can run over IP net-
works and so does not require special hardware and networks,
although for the best performance, users often need to create
distinct IP networks to avoid conflicts with other data traffic.
SAN services usually require some additional software to map
the service end points to *NIX device files, which can be parti-
tioned, formatted, and mounted like ordinary attached storage.
SAN services provide very low latency and high throughput, to
the point where they can substitute for attached storage.

For container systems these all pose essentially the same prob-
lem. The orchestration system must locate and mount the file
system on the host. Then it must be able to import the storage
into the container when it is created.

File Ownership and UID Mapping
One major unsolved problem for Docker (at the time of this writ-
ing) is control of the ownership and access permissions on files.

*NIX file ownership is defined by UID and GID numbers. For
a process to access a file, the UID of a process must match the
file owner UID, and the user must have the correct permissions
or get access via group membership and permissions. With the
exception of the root user (UID 0, GID 0), the assignment of
UID/GID is arbitrary and by convention.

The UID assignment inside a container is defined by the /etc

/passwd file built into the container image. There’s no relation
to the UID assignment on the container host or on any network
storage.

When a process inside a container creates a file, it will be owned
by the UID of the process in the container even when seen from
the host. When using host, network, or cloud block storage, any
process on the host with the same UID will have the same access
as the processes inside the container.

Access in the other direction is also a problem. If files on shared
storage are created with a UID that does not match the process
UID inside the container, then the container process will fail
when accessing the storage.

This will also benefit developers trying to create generic con-
tainer images that are able to share storage between containers.
Currently, any two containers that mean to share storage must
have identical user maps.

The Linux kernel namespace system includes the ability to map
users from inside a container to a different one on the host. The
Docker developers are working on including user namespaces,
but they present a number of security issues that have to be
resolved in the process.

Container Hosts and Storage Drivers
Even before the introduction of Docker there was a movement to
redefine the way in which software is packaged and delivered.
CoreOS [5] and, more recently, Project Atomic [6] are projects
which aim to create a stripped down host image that contains
just the components needed to run container applications. Since
they just run containers, much of the general purpose software
normally installed on a host or VM isn’t needed. These lean
images do not need patching. Rather, the host image is replaced
and rebooted as a unit (hence, “Atomic”).

Although this simplifies the maintenance of both the host and
the containers, using “forklift updates,” the rigid image formats
make adding drivers or other customizations difficult. There is a
very strong pressure to keep the host images small and to include
only critical software. Everything that can be put into a con-
tainer is, even tools used to monitor and manage the container
host itself.

These purpose-made container hosts will need to provide a full
range of network storage drivers built into the image, or they will
have to be able to accept drivers running in containers if they
want to compete with general purpose hosts configured for con-
tainers. It’s not clear yet which drivers will be available for these
systems, but they are being actively developed.

Cloud Storage
Cloud services take a step further back. They disassociate the
different components of a computer system and make them
self-service. They can be managed through a user interface or
through an API.

14  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

Cloud storage for applications usually takes one of two forms:
object storage and block storage. (The third form of cloud storage,
image storage, is used to provide bootable devices for VMs.)

Object Storage
All of the cloud services, public and private, offer some form of
object storage, called Swift in OpenStack. The AWS object store
is S3, and Google offers Google Cloud Storage (not to be confused
with Google Cloud Engine Storage; see “Block Storage,” below).

Object stores are different from the other storage systems.
Rather than mounting a file system, the data are retrieved
through a REST API directly by processes inside the container.
Each file is retrieved as a unit and is placed by the calling appli-
cation into an accessible file space. This means that object stor-
age doesn’t need any special treatment by either the container
system or the orchestration system.

Object stores do require some form of identification and authen-
tication to set and retrieve data objects. Managing sensitive
information in container systems is another area of current work.

Container images that want to use object stores must include
any required access software. This may be an API library for a
scripting language or, possibly, direct coding of the HTTP calls.

The push-pull nature of object stores makes them unsuitable
for uses that require fast read/write access to small fragments
of a file. Access can have very high latency, but the objects are
accessed as a unit, so they are unlikely to be corrupted during
the read/write operations. The most common uses are for con-
figuration files and for situations where data inconsistency from
access collisions can be accepted in the short term.

Block Storage
Cloud block storage appears on a (virtual) host as if it were
direct attached storage. Each cloud storage system has a differ-
ent name for its own form of block storage. OpenStack uses the
Cinder service. On Amazon Web Services it’s known as EBS.
Google calls it GCE Storage (not to be confused with Google
Cloud Storage).

Cloud block storage systems are controlled through a published
API. When a process requests access to cloud storage, a new
device file is created. Then the host can mount the device into
the file system. From there Docker can import the storage into
containers.

The challenge for an orchestration system is to mount each block
device onto a container host on-demand and make it available to
the container system. Since each cloud environment has a differ-
ent API, either they all must be hard-coded into the orchestra-
tion system or the orchestration system must provide a plugin
mechanism.

So far the only combination I’ve seen work is Kubernetes in
Google Cloud Engine, but developers on Kubernetes and oth-
ers all recognize the need for this feature and are actively
developing.

Summary
Container systems in general and Docker in particular are lim-
ited in scope to the host on which they run. They create contain-
ers by altering the view of the host that contained processes can
see. They can only manage the resources that already exist on
the host.

Orchestration systems manage multiple containers across a
cluster of container hosts. They allow users to define complex
applications composed of multiple containers. They must create
or configure the resources that the containers need, and then
trigger the container system, like Docker, to create the contain-
ers and bind them to the resources.

Currently, only Kubernetes can mount GCE Storage when run-
ning in the GCE environment.

For container systems to scale, the orchestration systems will
need to be extended to be able to communicate and manage the
various network and cloud storage systems. Docker and the
orchestration systems will need to be able to manage user map-
ping as well as file access controls.

In both Fleet and Kubernetes, the development teams are actively
working to address all of these issues, and I expect that there will
be ways to manage storage in large container farms very soon.
Once there are, containers will begin to fulfill their promise.

For a more detailed treatment of containers, see the article by
Bottomley and Emelyanov [7].

References
[1] Daniel Walsh, “Are Docker Containers Really Secure?”:
http://opensource.com/business/14/7/docker-security
-selinux.

[2] Linux kernel namespaces: http://lwn.net/Articles/531114/.

[3] CoreOS Fleet: https://github.com/coreos/fleet.

[4] Google Kubernetes: https://github.com/GoogleCloud
Platform/kubernetes.

[5] CoreOS container hosts: https://coreos.com/.

[6] Project Atomic: http://www.projectatomic.io/.

[7] James Bottomley and Pavel Emelyanov, “Containers,”
;login:, vol. 39, no. 5, Oct. 2014: https://www.usenix.org
/publications/login/october-2014-vol-39-no-5/containers.

