
www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  15

FILE SYSTEMS AND STORAGE

Interview with Steve Swanson
R I K F A R R O W

W hile walking the poster session at OSDI ’14, I saw Steve Swanson.
I wanted to talk to him about the past and future of non-volatile
memory (NVM), since he and his students had produced many

papers about the topic that I’d heard presented. I also had some vague ideas
about a class for FAST ’15 on the history of NVM. Alas, Steve was moving so
quickly through the crowd that I never caught up to him in Broomfield.

However, Steve later agreed to an email interview.

Rik: How did you get interested in non-volatile storage?

Steve: I was a new professor and was talking to a colleague from industry who was working
on storage systems. He mentioned that flash memory was really beginning to shake things
up, so I took a look at it. It turned out to be a perfect research problem for me: It involved hard-
ware and system design (which is, broadly, what I did my PhD on), and it centered around
a huge disruption in the performance of a particular piece of the system. Those kinds of
changes always result in big challenges and open up all kinds of new areas for research. My
students and I dove in, and it’s been really exciting and has allowed us to do interesting work
on both the hardware and software side as well as at the application level.

Rik: I wanted to start off with some history, or at least try to better understand how we got
to where we are today with flash-based storage devices. Having heard many paper presen-
tations, it seems like there have been, and will continue to be, two big issues, both of them
interrelated.

These are the flash translation layer (FTL) and the disk-style interface for flash-based
storage. Can you explain why vendors adopted these interfaces?

Steve: FTLs arose because SSD vendors needed to make it as easy as possible for customers
to use their new drives. It’s a much simpler proposition to sell something as a faster, drop-
in replacement for a hard drive. If you can make your flash drive look like a hard drive, you
immediately have support from all major operating systems, you can use existing file sys-
tems, etc. The alternative is to tell a customer that you have a new, fast storage device, but it
will require them to completely change the way their software interacts with storage. That’s
just a non-starter.

The disk-based interface that FTLs emulate emerged because it is a natural and reason-
ably efficient interface for talking to a disk drive. Indeed, just about everything about how
software interacts with storage has been built up around disk-based storage. It shows up
throughout the standard file-based interfaces that programmers use all the time.

The problem is that flash memory looks nothing like a disk. The most problematic difference
is that flash memory does not support in-place update. Inside an SSD, there are several flash
chips. Each flash chip is broken up into 1000s of “blocks” that are a few hundred kilobytes in
size. The blocks are, in turn, broken into pages that are between 2 and 16 KB.

Steven Swanson is an associate
professor in the Department
of Computer Science and
Engineering at the University
of California, San Diego and

the director of the Non-Volatile Systems
Laboratory. His research interests include the
systems, architecture, security, and reliability
issues surrounding non-volatile, solid-state
memories. He also co-leads projects to
develop low-power co-processors for irregular
applications and to devise software techniques
for using multiple processors to speed up
single-threaded computations. In previous
lives he has worked on scalable dataflow
architectures, ubiquitous computing, and
simultaneous multithreading. He received his
PhD from the University of Washington in
2006 and his undergraduate degree from the
University of Puget Sound.
swanson@eng.ucsd.edu

Rik is the editor of ;login:.
rik@usenix.org

16    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Interview with Steve Swanson

Flash supports three main operations. First, you can “erase” a
block, that is, set it to all 1s. It seems like “erased” should be all
0s but the convention is that it’s all 1s. Erasing a block takes a
few milliseconds. Second, you can “program” a page in an erased
block, which means you can change some of the 1s to 0s. You have
to program the whole page at once, and you must program the
pages within a block in order. Programming takes hundreds of
microseconds. Third, you can read a page, and reading takes tens
of microseconds. The result of this is that if you want to change
a value in a particular page, you need to first erase the entire
block and then reprogram the entire block. This is enormously
inefficient.

The final wrinkle is that you can only erase each block a rela-
tively small number of times before it will become unreliable—
between 500 and 100,000 depending on the type of flash chip.
This means that even if erasing and reprogramming a block were
an efficient way to modify flash, performing an erase on every
modification of data would quickly wear out your flash.

So the FTL’s job is pretty daunting: It has to hide the asymme-
try between programs and erasures, ensure that erasures are
spread out relatively evenly across all the flash in the system so
that “hot spots” don’t cause a portion of the flash to wear out too
soon, present a disk-like interface, and do all this efficiently and
quickly. Meeting these challenges has turned out to be pretty dif-
ficult, but SSD manufacturers have done a remarkably good job
of producing fast, reliable SSDs.

The first SSDs looked exactly like small hard drives. They
were the same shape, and they connected to the computer via
standard hard drive interface protocols (i.e., SATA or SAS). But
those protocols were built for disks. Flash memory provided the
possibility of building much faster (in terms of both bandwidth
and latency) storage devices than SATA or SAS could support.
Importantly, SSD could also support much more concurrency
than hard drives, and they supported vastly more efficient ran-
dom accesses than hard drives.

The first company to take a crack at something better was
FusionIO. They announced and demonstrated their ioDrive
product in September 2007. Instead of using a conventional form
factor and protocol, the ioDrive was a PCIe card (like a graphics
card) and used a customized interface that was tuned for flash-
based storage rather than disk-based storage. FusionIO also
began to experiment with new interfaces for storage, making
it look quite different from a disk. It’s not clear how successful
this has been. The disk-like interface has a heavy incumbent
advantage.

More recently, NVM Express has emerged as a standard for
communicating with the PCIe-attached SSDs. It supports lots of
concurrency and is built for low-latency, high-bandwidth drives.
Many vendors sell (or will sell shortly) NVMe drives.

Another set of systems has taken a different approach. Rather
than use NVMe to connect an SSD to a single system, they build
large boxes full of flash and expose them over a network-like
interconnect (usually Fibre Channel or iSCSI) to many serv-
ers. These network-attached storage (NAS) SSDs must solve all
the same problems NVMe or SATA SSDs must solve, but they
do address one puzzle that faces companies building high-end
SSDs: These new drives can deliver so much storage perfor-
mance that it’s hard for a single server to keep up. By exposing
one drive to many machines, NAS SSDs don’t have that problem.
Violin and Texas Memory Systems fall into this camp.

Rik: If vendors have done such a great job with flash, why has
there been so much academic research on it?

Steve: I think the main problem here is that most researchers
don’t know what industry is actually doing. The inner workings
of a company’s FTL are their crown jewels. Physically building
an SSD (i.e., assembling some flash chips next to a flash control-
ler on PCB) is not technically challenging. The real challenge
is in managing the flash so that performance is consistent and
managing errors so that they can meet or exceed the endurance
ratings provided by flash chip manufacturers. As a result, the
research community has very little visibility into what’s actually
going on inside companies. Some researchers may know, but the
information is hidden behind NDAs.

Of course, designing a good FTL is an interesting problem,
and there are many different approaches to take, so research-
ers write papers about them. However, it’s not clear how much
impact they will have. Maybe the techniques they are proposing
are cutting edge, extend the state of the art, and/or are adopted
by companies. Or maybe they aren’t. It’s hard to tell, since com-
panies don’t disclose how their FTLs work.

My personal opinion is that, on the basic nuts and bolts of man-
aging flash, the companies are probably ahead of the research-
ers, since that technology is directly marketable, the companies
are better funded, and they have better access to proprietary
information about flash chips, etc.

I think researchers have the upper hand in terms of rethinking
how SSD should appear to the rest of the system—for example,
adding programmability or getting away from the legacy block-
based interface, since this kind of fundamental rethinking of
how storage should work is more challenging in the commercial
environment. However, I think it’s probably the more interesting
part of SSD research and, in the long term, will have more impact
than, for example, a new proprietary wear-leveling scheme.

Rik: I’ve heard several paper presentations that cover aspects
of NVM when it has become byte addressable, instead of block
addressable, as it is today. That’s assuming, of course, that the
promises come true. Can you talk about future directions for
research?

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  17

FILE SYSTEMS AND STORAGE
Interview with Steve Swanson

Steve: I think the most pressing questions going forward lie along
four different lines:

Byte-addressable memories will probably first appear in small
quantities in flash-based SSD. One important question is how
can we use small amounts of byte-addressable NVM to improve
the performance of flash-based SSDs. This is the nearest-term
question, and there are already some answers out there. For
instance, it’s widely known that FusionIO (now SanDisk) uses a
form of byte-addressable NVM in its SSDs.

A second likely early application for NVM is in smartphones and
other mobile devices. You can imagine a system with a single
kind of memory that would serve the role of modern DRAM and
also serve as persistent data storage. Since it would have the
performance of DRAM, it could alter the programming model
for apps: Rather than interacting with key-value stores and other
rather clumsy interfaces to persistent storage, they could just
create data structures in persistent memory. This would, I think,
be a nice fit for lots of small, one-off apps. The main challenge
here is in making it easy for programmers to get the persistent
data structures right. It’s very hard to program a linked list or
tree so that, if power fails at an inopportune moment, you can
ensure that the data structure remains in a usable state. We have
done some work in this area recently as has Mike Swift’s group
at the University of Wisconsin in Madison, but there’s much left
to do.

If we solve the next problem, then many of the techniques that
we could use in mobile systems would be applicable in larger
systems too.

Third, if byte-addressable memories are going to be useful in
datacenter-scale storage systems, the data they hold must be
replicated, so that if the server hosting one copy goes down, the
data is still available. This is a challenge because the memories
have access times on the order of tens of nanoseconds, while
network latencies are on the order of (at least) a few microsec-
onds. How can we transmit updates to the backup copy without
squandering the performance of these new, fast, byte-address-
able memories? There are many possible solutions. We’ve done
work on a software-based solution, but it’s also possible that we
should integrate the network directly into the memory system.
This also raises the question of how to reconcile the large body
of work from the distributed systems community on distributed
replication with the equally large body of work from the archi-
tecture community on how to build scalable memory systems.
Both fields deal with issues of data consistency and how updates
at different nodes should interact with one another, but they do
so in very different ways.

The fourth area of interest is in how we can integrate I/O more
deeply into programming languages. In modern languages, I/O
is an afterthought, so the compiler really has no idea I/O is going
on and can’t do anything to optimize it. This was not a big deal
for disk-based systems, since disk I/O operates on time scales so
large (that is, they are so slow) that the compiler could not hope to
do anything to improve I/O performance. As storage performance
increases, it becomes very feasible that a compiler could, for
example, identify I/O operations and execute them a few micro
seconds early so that the code that needs the results would not
have to wait for them. Doing this means we need to formalize the
semantics of I/O in a precise way that a compiler could deal with.

