
www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  47

COLUMNS

Thinking about Type Checking
D A V I D B E A Z L E Y

A common complaint levied against Python (and other similar lan-
guages) is the dynamic nature of its type handling. Dynamic typing
makes it difficult to optimize performance because code can’t be

compiled in the same way that it is in languages like C or Java. The lack of
explicitly stated types can also make it difficult to figure out how the parts
of a large application might fit together if you’re simply looking at them in
isolation. This difficulty also applies to tools that might analyze or try to
check your program for correctness.

If you’re using Python to write simple scripts, dynamic typing is not something you’re likely
to spend much time worrying about (if anything, not having to worry about types is a nice
feature). However, if you’re using Python to write a larger application, type-related issues
might cause headaches. Sometimes programmers assume that these headaches are just part
of using Python and that there isn’t much that they can do about it. Not true. As an application
developer, you actually have a variety of techniques that can be used to better control what’s
happening with types in a program. In this installment, we explore some of these techniques.

Dynamic Typing
To start, consider the following function:

 def add(x, y):

 return x + y

In this function, there is nothing to indicate the expected types of the inputs. In fact, it will
work with any inputs that happen to be compatible with the + operator used inside. This is
dynamic typing in action. For example:

 >>> add(2, 3)

 5

 >>> add(‘two’, ‘three’)

 ‘twothree’

 >>> add([1,2], [3,4,5])

 [1, 2, 3, 4, 5]

 >>>

This kind of flexibility is both a blessing and curse. On one hand, you have the power to write
very general-purpose code that works with almost anything. On the other hand, flexibility
can introduce all sorts of strange bugs and usability problems. For instance, a function might
accidentally “work” in situations where it might have been better to raise an error. Suppose, for
example, you were expecting a mathematical operation, but strings got passed in by accident:

 >>> add(‘2’, ‘3’)

 ‘23’

 >>>

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

48    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

COLUMNS
Thinking about Type Checking

You might look at something like that and say “but I would never
do that!” Perhaps, but if you’re working with a bunch of Web cod-
ers, you might never know what they’re going to pass into your
program. Frankly, it could probably be just about anything, so it’s
probably best to plan for the worst. I digress.

The lack of types in the source may make it difficult for someone
else to understand code—especially as it grows in size and you
start to think about the interconnections between components.
As such, much of the burden is placed on writing good documen-
tation strings—at least you can describe your intent to someone
reading the source and hope for the best:

 def add(x, y):

 ‘’’

 Adds the numbers x and y

 ‘’’

 return x + y

You might be inclined to explicitly enforce or check types using
isinstance(). For example:

 def add(x, y):

 ‘’’

 Adds the numbers x and y

 ‘’’

 assert isinstance(x, (int, float)), ‘expected number’

 assert isinstance(y, (int, float)), ‘expected number’

 return x + y

However, doing so typically leads to ugly non-idiomatic code
and may make the code unnecessarily inflexible. For example,
what if someone wants to use the above function with Decimal
objects? Is that allowed?

 >>> from decimal import Decimal

 >>> x = Decimal(‘2’)

 >>> y = Decimal(‘3’)

 >>> add(x, y)

 Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “<stdin>”, line 5, in add

 AssertionError: expected number

 >>>

Alternatively, you might see a function written like this:

 def add(x, y):

 ‘’’

 Adds the integers x and y

 ‘’’

 return int(x) + int(y)

This function will attempt to coerce whatever you give it into a
specific type. For example:

 >>> add(2, 3)

 5

 >>> add(‘2’, ‘3’)

 5

 >>> add(‘two’, ‘three’)

 Traceback (most recent call last):

 ...

 ValueError: invalid literal for int() with base 10: ‘two’

 >>>

This too might have bizarre problems. For example, what if
floats are given?

 >>> add(2.5, 3.2)

 5

 >>>

Alas, the function runs but silently throws away the fractional
part of the inputs. If that’s what you expected, great, but if not,
then you have a whole new set of problems to worry about. Need-
less to say, it can get complicated.

Do type-related issues really matter in real applications? Based
on my own experience, I’d answer yes. As a developer, you often
try to do your best in writing accurate code and in writing tests.
However, if you’re working on a team, you might not know every
possible way that someone will interact with your program. As
such, it can often pay to take a defensive posture in order to iden-
tify problems earlier rather than later. Frankly, I often think about
such matters solely as a way to prevent myself from creating bugs.

Having better control over type handling in Python is mostly
solved through techniques that add layers to objects and func-
tions. For example, using properties to wrap instance attributes
or using a decorator to wrap functions [4]. The next few sections
have a few examples.

Managing Attribute Types on Instances
Suppose you have a class definition like this:

 class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

By default, the attributes of Stock can be anything. For example:

 >>> s = Stock(‘IBM’, 50, 91.1)

 >>> s.shares = 75

 >>> s.shares = ‘75’

 >>> s.shares = ‘seventyfive’

 >>>

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  49

COLUMNS
Thinking about Type Checking

However, suppose you wanted to enforce some controls on the
shares attribute. One approach is to define shares as a property.
For example:

 class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

 @property

 def shares(self):

 ‘Getter function. Return the shares attribute’

 return self.__dict__[‘shares’]

 @shares.setter

 def shares(self, value):

 ‘Setter function. Set the shares attribute’

 assert isinstance(value, int), ‘Expected int’

 self.__dict__[‘shares’] = value

A property is a pair of get/set functions that captures the dot (.)
operator for a specific attribute. In this case, all access to the
shares attribute routes through the two functions provided.
These two functions merely access the underlying instance
dictionary, but the setter has been programmed to make sure the
value is a proper integer. The resulting class works in exactly the
same way as it did before except that there is now type checking
on shares:

 >>> s = Stock(‘IBM’, 50, 91.1)

 >>> s.shares = 75

 >>> s.shares = ‘75’

 Traceback (most recent call last):

 ...

 AssertionError: Expected int

 >>>

The verbose nature of writing out code for a property is a bit
annoying if you have to do it a lot. Thus, if type checking is some-
thing you might reuse in different contexts, you can actually
make a utility function to generate the property code for you. For
example:

 def Integer(name):

 @property

 def intvalue(self):

 return self.__dict__[name]

 @intvalue.setter

 def intvalue(self, value):

 assert isinstance(value, int), ‘Expected int’

 self.__dict__[name] = value

 return intvalue

 # Example

 class Point(object):

 x = Integer(‘x’)

 y = Integer(‘y’)

 def __init__(self, x, y):

 self.x = x

 self.y = y

Here is an example of using the type-checked attribute:

 >>> p = Point(2,3)

 >>> p.x = 4

 >>> p.x = ‘4’

 Traceback (most recent call last):

 ...

 AssertionError: Expected int

 >>>

Alternatively, you can implement special type-checked attri-
butes directly using a “descriptor” like this:

 class Integer(object):

 def __init__(self, name):

 self.name = name

 def __get__(self, instance, cls):

 if instance is None:

 return self

 else:

 return instance.__dict__[self.name]

 def __set__(self, instance, value):

 assert isinstance(value, int), ‘Expected int’

 instance.__dict__[self.name] = value

A descriptor is similar to a property in that it captures the dot (.)
operation on selected attributes. Basically, if you add an instance
of a descriptor to a class, access to the attribute will route
through the __get__() and __set__() methods. You would use
the descriptor in exactly the same way the Integer() function
was used in the above example.

Managing Types in Function Arguments
You can manage the types passed to a function, but doing so usu-
ally involves putting a wrapper around it using a decorator. Here
is an example that forces all of the arguments to integers:

 from functools import wraps

 def intargs(func):

 @wraps(func)

 def wrapper(*args, **kwargs):

 iargs = [int(arg) for arg in args]

 ikwargs = { name: int(val) for name, val in kwargs.items() }

 return func(*iargs, **ikwargs)

 return wrapper

 # Example use

 @intargs

 def add(x, y):

 return x + y

50    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

COLUMNS
Thinking about Type Checking

If you try the resulting decorator, you’ll get this behavior:

 >>> add(2,3)

 5

 >>> add(‘2’, ‘3’)

 5

 >>> add(‘two’, ‘three’)

 Traceback (most recent call last):

 ...

 ValueError: invalid literal for int() with base 10: ‘two’

 >>>

In practice, you might want to define a decorator that is a bit
more selective in its type checking. Here is an example of apply-
ing type checks selectively to only some of the arguments. Note:
This example relies on the use of the inspect.signature(), which
was only introduced in Python 3.3 [1]. It will probably require a
bit of careful study.

 from functools import wraps

 from inspect import signature

 def enforce(**types):

 def decorate(func):

 sig = signature(func)

 @wraps(func)

 def wrapper(*args, **kwargs):

 bound_values = sig.bind(*args, **kwargs)

 for name, value in bound_values.arguments.items():

 if name in types:

 expected_type = types[name]

 assert isinstance(bound_values.

arguments[name], \

 expected_type), ‘%s expected %s’ \

 % (name, expected_type.__name__)

 return func(*args, **kwargs)

 return wrapper

 return decorate

 # Example use

 @enforce(x=int, z=str)

 def spam(x, y, z):

 pass

In this example, the decorator works by obtaining the function’s
calling signature. In the wrapper, the sig.bind() operation binds
the supplied arguments to argument names in the signature.
The code that follows then iterates over the supplied arguments,
looks up their expected type (if any), and asserts that it is cor-
rect. Here is an example of how the function would work:

 >>> spam(1, 2, ‘hello’)

 >>> spam(1, ‘hello’, ‘world’)

 >>> spam(‘1’, ‘hello’, ‘world’)

 Traceback (most recent call last):

 ...

 AssertionError: x expected int

 >>> spam(1, ‘hello’, 3)

 Traceback (most recent call last):

 ...

 AssertionError: z expected str

 >>>

A Word on Assertions
In these examples, the assert statement has been used to enforce
type checks. One special feature of assert is that it can be easily
disabled if you run Python with the -O option. For example:

 bash % python -O someprogram.py

When you do this, all of the asserts simply get stripped from the
program—resulting in faster performance because all of the
extra checking will be gone. This actually opens up an interest-
ing spin on the type-checking problem. If you have an application
that executes in both a staging and production environment, you
can do things like enable type checks in staging (where you hope
all of the code is properly tested and errors would be caught), but
turn them off in production.

There is also a global __debug__ variable that is normally set to
True, but it changes to False when -O is given. You might use this
to selectively disable properties. For example:

 class Point(object):

 if __debug__:

 x = Integer(‘x’)

 y = Integer(‘y’)

 def __init__(self, x, y):

 self.x = x

 self.y = y

The Future: Function Annotations?
The future of type checking may lie in the use of function anno-
tations. First introduced in Python 3, functions can be annotated
with additional metadata. For example:

 def add(x:int, y:int) -> int:

 return x + y

These annotations are merely stored as additional information.
For example:

 >>> add.__annotations__

 {‘return’: <class ‘int’>, ‘x’: <class ‘int’>, ‘y’: <class ‘int’>}

 >>>

To date, the use of function annotations in practice has been
somewhat scanty. However, projects such as mypy [2] have
renewed interest in their possible use for type checking. For
example, here is a sample function annotated in the style of mypy:

 def average(values: List[float]) -> float:

 total = sum(values)

 return total / len(values)

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  51

COLUMNS
Thinking about Type Checking

A recent email posting from Guido van Rossum indicated a
renewed interest in using annotations for type checking and in
adopting the mypy annotation style in particular [3]. Standard-
izing the use of annotations for types would be an interesting
development. It’s definitely something worth watching in the
future.

References
[1] https://www.python.org/dev/peps/pep-0362 (Function
Signature Object).

[2] http://mypy-lang.org.

[3] https://mail.python.org/pipermail/python-ideas/2014
-August/028618.html.

[4] “Python 3: The Good, the Bad, and the Ugly” explains
decorators and function wrappers: https://www.usenix
.org/publications/login/april-2009-volume-34-number-2
/python-3-good-bad-and-ugly.

Do you know about the USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our
conferences proceedings and videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias. Your financial support plays a
major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX
Annual Fund, renew your membership, and ask your colleagues to join or renew today.

