
52    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

COLUMNS

iVoyeur
Spreading

B Y D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato
.com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

In engineering, we are told to avoid repeating ourselves [1], but as a blogo-
vangelizer (or whatever it is I’m doing now), I find it an increasingly
burdensome and self-defeating mantra. It’d be great if I could give one

talk and consider the subject of that talk closed. However, over the course of
my first year as a developer evangelist, wherein I’ve delivered 12 conference
talks, I’ve slowly begun to realize two very interesting facts.

First, most of the people who came to the conference don’t see my talk. Even if the conference
is a single-track, many attendees are consumed by a fire at work or by some really interest-
ing “problem solving” (read: cat gifs), or they’re in the hallway talking to the speaker from the
last session. Whatever the reason, only a fraction of the attendees actually attempt to parse
my one-two punch of words and slides.

Second, I very often fail to convey what I intend to the fraction of attendees who actually lis-
ten to me. I know this because when I talk to people who attend my talks, our conversations
often go something like this:

Attendee: “Hey, I really enjoyed your talk.”

Me: “Awesome, thanks! I hope it helped.”

Attendee: “It did! I’m going straight home to <do horrifyingly wrong thing>.”

Me: “Good god, why?!”

Attendee: “Well, silly, because you said <understandable but horrifyingly wrong interpreta-
tion of thing I said that would take me days to unravel and correct>.”

Me: “Yeah, I can’t take the credit for that. I actually copied it from <person who works at
Microsoft>.”

My point is, repeating yourself in an education context is not a bad thing (especially if you
can’t seem to get it right the first time). Many tech speakers riff on variations of the same
talk over and over again for years. I used to suspect this was laziness, or that they’d gotten
trapped by their own cult-of-personality, but now I’m realizing that you have to repeat your-
self a lot to actually reach a critical-mass of mind-share in this medium. This is good news
for me, because it’s pretty often the case when I find myself belaboring a point—writing and
talking a lot about the same subject—that it’s because I’m trying to share something I wish I
would have understood years ago.

Lately, I’ve been writing a lot about fat data points, which is the data storage format employed
by Librato in our metrics product, and it’s certainly the case that I wish I’d have understood
them years ago. At Librato, a common use case for us is that of service-side aggregation.
This is the practice of customers emitting measurements to us directly from inside worker
threads running across lots and lots of geographically dispersed computers.

If a customer spawns ten thousand worker threads, and each of them emits a few measure-
ments, we can easily wind up with upwards of fifty thousand in-bound data points in the

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  53

COLUMNS
iVoyeur: Spreading

space of a second, which we then need to aggregate in a statisti-
cally significant way. Taking the average of a set this size almost
certainly destroys the truth hidden within the data, so for this,
and many other reasons [2], we use fat data points to preserve
the truth.

When writing about fat data points became talking about
them at LISA14 [3], I got a pretty awesome question from Doug
Hughes. It was simple, direct, and conveyed a deeply satisfy-
ing sense that I’d managed to successfully communicate the
concept. Specifically, Doug’s question was: “Okay, but how can
WE use this?”

Avoiding the obvious (and correct) answer, that you should
replace whatever you’re currently using with Librato as soon as
possible, it’s actually possible to preserve spread data today with
systems like RRDtool and Graphite. So in the interest of giving
a meaningful answer to Doug’s question, I’d like to show you
how you’d configure Graphite to preserve spread data—the sum,
count, min, max, average, and etc.

For the purposes of this how-to, I’m using a Nagios system that’s
emitting metrics to Graphite by way of StatsD. The metrics-
extraction from Nagios is being performed by Graphios [4]. I’m
going to use the one-minute CPU load metric as my example
since I’m lazy and unimaginative. Figure 1 is a quick-and-dirty
sketch of my setup.

Graphite controls rollups with the storage-aggregations.conf file.
When a new metric is discovered for which there is no existing
Whisper database, Carbon attempts to match the metric name
against the rules in storage-aggregations.conf, beginning at the
top and continuing to the bottom. The first line that matches the
metric name wins, and no further lines are parsed once a match
is found. If you’re really paying attention, then you’ve probably
realized that these rules make it impossible to assign different
consolidation functions to different archives inside a Whisper file.

In order to maintain, for example, both the min and max values
for a series in Graphite, therefore, we need to feed Graphite
the same metric with two different names. That way we can
match each variation of the metric name to a different rule in
storage-aggregations.conf.

One simple way to do this is via StatsD’s *timer* data type [5].
StatsD timers are intended to time things like function calls, to
see how long they take to execute, but in practice you can use a
timer to measure anything you might otherwise use a *gauge* to
measure. The primary difference is that where passing a gauge
into StatsD will merely result in a single value, a timer will cause
StatsD to compute and emit a whole slew of interesting sum-
mary metrics, including the min, max, sum, count, and even
percentiles for the StatsD flush interval.

So my strategy here is to emit the one-minute CPU load as
measured by Nagios into StatsD as a timer. Then I’ll configure
storage-aggregation rules in Graphite to match the min, max,
sum, and count for the summary statistics emitted by StatsD.
When I’m done, I’ll have different Whisper databases for this
metric for each of the summary types I want.

Beginning in the Nagios configs, I’ll configure a custom object
variable called *metrictype* in the service definition of the met-
ric I want to preserve spread data for:

define service{

	 use	 generic-service

	 host_name	 awacs

	 service_description	 LOAD

	 check_command	 check_load!50,60,70!80,90,100

	 _graphiteprefix	 Piegan-Nagios

	 _metrictype	 timer

}

Graphios will parse out the _graphiteprefix and _metrictype
custom variables, appending my prefix to the metric name, and
translating the “timer” keyword into the associated StatsD
wire-protocol [6]. On my system (hostname: awacs), this is what
Graphios puts on the wire for StatsD:

Piegan-Nagios.awacs.load1:0.080|ms

No special configuration is required for StatsD. By default, StatsD
will prepend two additional prefixes to my metric name: stats
and timers. Here’s what StatsD puts on the wire for Carbon:

stats.timers.Piegan-Nagios.awacs.load1.sum 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.sum_90 0.080

1416803719

stats.timers.Piegan-Nagios.awacs.load1.lower 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.upper 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.upper_90 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.sum 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.sum_90 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.count 1 1416803719

stats.timers.Piegan-Nagios.awacs.load1.count_ps 1 1416803719

stats.timers.Piegan-Nagios.awacs.load1.mean 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.median 0.080 1416803719

Figure 1: My tool-chain for the purposes of this article

54    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

COLUMNS
iVoyeur: Spreading

To be clear, what’s happening here is StatsD is accepting the
load1 metric, and, because we’ve specified that it is a timer (the
“|ms” suffix emitted by Graphios), StatsD automatically computes
all of these summarization metrics across its flush interval. Most
of these are self-explanatory; the metrics that look like thing_90
are the 90th percentile for thing (i.e., it is a number that 90
percent of the measurements in the flush interval are less than).
Count_ps is the count divided by the number of seconds in
StatsD’s flush interval (literally, ps here stands for per second).

Moving to the Graphite side, I’ve added rules to match each of
these StatsD summary metrics to my /opt/graphite/conf/storage
-aggregations.conf file:

[min]

pattern = stats.timers.*lower$

xFilesFactor = 0.9

aggregationMethod = min

[max]

pattern = stats.timers.*(upper|upper_90)$

xFilesFactor = 0.9

aggregationMethod = max

[sum]

pattern = stats.timers.*sum$

xFilesFactor = 0.9

aggregationMethod = sum

<snip>

Carbon will use this file to properly create the Whisper data-
bases for these metrics in a way that properly aggregates the data
over time, preserving what’s important to us. I can verify it’s
working by checking the creation log:

23/11/2014 04:43:26 :: new metric

 stats.timers.Piegan-Nagios.awacs.

 load15.upper_90 matched aggregation schema max

Or by running whisper_info directly against the DBs:

root@precise64# for i in *; do

> echo ${i}: $(whisper-info ${i} | grep aggre) ; done

count_ps.wsp: aggregationMethod: count

count.wsp: aggregationMethod: count

lower.wsp: aggregationMethod: min

mean_90.wsp: aggregationMethod: average

mean.wsp: aggregationMethod: average

median.wsp: aggregationMethod: average

std.wsp: aggregationMethod: max

sum_90.wsp: aggregationMethod: sum

sum.wsp: aggregationMethod: sum

upper_90.wsp: aggregationMethod: max

upper.wsp: aggregationMethod: max

At this point, perhaps obviously, I can craft a graph depicting the
difference between the average and max rollups (Figure 2).

Figure 2: Plotting average vs. max for the same metric

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  55

COLUMNS
iVoyeur: Spreading

An interesting side effect of using StatsD timers this way is that
you can also set up custom storage schemas for different types
of spread data. For example, you could keep 10-second resolution
on the mean and median values for 24 hours, and toss them after
that while preserving the count and sum metrics at 10-minute
and one-hour resolutions for years (since those rollups are effec-
tively lossless and enable you to accurately compute the average
at display time using the divide() function).

With a little thought, you’ll wind up with a metrics storage
system that far more accurately reflects your data, while making
very effective use of space on disk. As always, I hope you found
this useful in your quantification endeavors, and I highly recom-
mend the use of spread data to protect the long-term fidelity of
your beloved measurements.

Take it easy.

References
[1] “Don’t Repeat Yourself”: http://en.wikipedia.org/wiki
/Don%27t_repeat_yourself.

[2] “Sensical Summarization for Time-Series”: http://blog
.librato.com/posts/time-series-data.

[3] LISA14: https://www.usenix.org/conference/lisa14.

[4] Graphios: https://github.com/shawn-sterling/graphios.

[5] StatsD Metric Types: https://github.com/etsy/statsd
/blob/master/docs/metric_types.md.

[6] StatsD Line Protocol: https://github.com/etsy/statsd/.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you promote your
organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we offer key
outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our multiple conference
sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation in neutral
forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholarships for students,
equal representation of women and minorities in the computing research community, and the development of
open source technology.

Learn more at:
www.usenix.org/supporter

