
14    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE

Interview with Christoph Hellwig
R I K F A R R O W

I first noticed Christoph Hellwig during FAST conferences. With his
spiky hair and non-academic background, he had a different presence
from most attendees. But I could tell he was an expert when it came to

XFS, a file system that was created by Silicon Graphics specifically for work-
ing with large files, then later ported to Linux.

Since we both attended Linux FAST, I got to know Christoph a bit better. Christoph is an
independent consultant and a Linux kernel developer, a combination that is rare, as most
Linux developers have some corporate sponsorship, usually in the form of a job. I also noticed
that Christoph likes to ski, reminding me of the many ski bums I’ve met who arrange their
life and work so they are free to ski when the slopes are best.

But unlike those ski bums, Christoph has established his chops as a Linux file system and
kernel developer expert. I was curious about how he got to his unusual position, and started
this interview after watching Christoph help run the Linux FAST ’15 workshop (see sum-
mary in this issue).

Rik: When/how did you start working with Linux?

Christoph: I was in high school and learned about Linux from a magazine related to all things
Internet that was popular in Germany in those days, and came with a ready-made Linux
install CD. I installed it on my Dad’s PC. Eventually, I got my own PC and had to fix the Linux
sound driver for it, which was my first kernel contribution.

Rik: You worked for a while at Caldera, then started taking classes in Austria.

Christoph: I only worked for Caldera for about a year, maybe a year and a half, and only did so
part time while finishing high school. Apparently I was productive enough that no one really
knew I was a high school student. When Caldera shut down their German engineering office
I got an offer from SGI to work full time for them out of their Munich office.

Math was interesting but a lot of work, so I switched to computer science. That turned out to
be a bad idea, as I already had a background in computer science and now a fair knowledge of
math, so the fairly low standards of the CS curriculum started to bore me. I was much hap-
pier working a real job where I learned from reading code, talking (or emailing) with experts
in their field, and reading the bits of CS research that actually matter to me, which I wasn’t
exposed to at all at my university.

Through a loophole, I was taking lots of masters-level courses even though I never got an
undergrad degree, but abusing those loopholes made me lose a lot of credits whenever they
changed the curriculum, so in the end I had to give up my plan to slowly get my undergrad
degree while working full time (and skiing full time!). In retrospect, trying to get that degree
at all is probably the biggest regret I have, but that’s definitively not the feeling I had back then.

Rik: When did you start working with file systems? Or how did you get involved? The first
time I recall seeing you was at FAST, and you were making points about XFS. In my mind, I
found myself labeling you the XFS guy.

Christoph Hellwig has been
working with and on Linux for
the last ten years, dealing with
kernel-related issues much of
the time. In addition he is or

was involved with various other open source
projects. After a number of smaller network
administration and programming contracts,
he worked for Caldera’s German development
subsidiary on various kernel and user-level
aspects of the OpenLinux distribution.
Since 2004 he has been running his own
business, focusing on consulting, training,
and contracting work in the open source
hemisphere. Specializing on Linux file systems
and storage, he is also active in bordering
areas such as virtualization and networking.
He has worked for well-known customers such
as Dell, SGI, IBM, Red Hat and startups like
LeftHand Networks and Smapper Applied Data
or Nebula. hch@infradead.org

Rik Farrow is the editor of ;login:.
rik@usenix.org

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  15

FILE SYSTEMS AND STORAGE
Interview with Christoph Hellwig

Christoph: I started out my “file-system career” by hacking on
support for simple foreign file systems early on in my Linux
career—that’s where my maintainer hat for the SysV / V7 file-
system driver started as well. Then I moved on to play with the
newly open-sourced IBM JFS file system and helped to clean it
up so it could be merged into the Linux kernel. SGI hired me as
junior file-system person with Linux community experience in
2002, and I gradually moved up the food chain from there.

Rik: During Linux FAST 2015, you and Ted Ts’o often mentioned
tools that actually help make it easier to develop concurrent code
inside of the kernel, rather than using FUSE. What are these
tools, and how does one learn about using them?

Christoph: There are a few tools I rely on a lot:

◆◆ lockdep
This is a tool to verify locking order, but also much more
complicated constraints, such as locks taken in the page-out
path but not held around memory allocation, which can lead to
page outs. It also detects locks that are held while the contain-
ing objects are also holding locks, and much more. In a heavily
multithreaded environment, this tool probably has the checks
that code triggers most often.

◆◆ slab debugging
The instrumented memory allocator that detects all kinds of
use after frees is highly useful, although there are lots of librar-
ies that provide the same functionality in user space these days.
There also are the kmemleak and kasan tools that allow for very
advanced memory leak detection.

◆◆ instrumented linked list / debug object
We also have the instrumented version of linked lists, which
is very helpful in avoiding corruption, and the debug object’s
functionality that allows you to enforce lifetime rules for arbi-
trary kernel objects.

◆◆ static trace points (trace events)
Linux now has a very nice way of embedding trace points into
code that has almost zero overhead if not enabled. Code that
has a lot of those is really easy to instrument, especially since
the tools for it allow nice use cases like only enabling the events
for specific processes or various other conditions. The trace
events also double as software profiling counters for the perf
tool, allowing for very interesting semantic profiles.

But even more important than these are tools that help improve
the code at runtime, most importantly the “sparse” tool, which
allows us to, for example, annotate integer types as “big endian”
or “little endian” and warn about missing conversions without
forcing the use of complex types.

All the kernel debug options are documented sparsely in their
help texts and the kernel documentation. For information more
suitable to beginners, a Web search usually gives good results on
sites such as stackoverflow.com.

Rik: Do you think it is harder to get involved as a Linux kernel
developer now than it was when you started?

Christoph: I think doing the same work is easier these days with
all the tools we have, but finding it might be harder, and becom-
ing relevant definitively is.

Rik: You said you work a lot on the SCSI subsystem. Why is the
SCSI subsystem so important to file systems?

Christoph: SCSI is one of the two standards most block stor-
age devices speak today. SCSI is used over SAS, Fibre Channel,
and iSCSI for enterprise storage; over USB for many consumer
devices; and these days also in a lot of virtualized environments.
Many operating systems, including Linux, also go through the
SCSI layer to access the other major protocol, ATA, for historical
reasons. In short, SCSI is what most block-based file systems
end up using underneath, and it is one of the most important lay-
ers below the file system.

Rik: Your name was in the news in March 2015. You are involved
in a legal action against VMware, because VMware has used
Linux code in their hypervisor, as well as used Busybox as a shell
[1, 2]. I’m wondering why you, someone who is self-employed and
thus only making money when doing billable work, is taking the
time to be involved with this lawsuit?

Christoph: Mostly, I want to avoid people piggybacking on my
work, or the work of us kernel developers in general, without giv-
ing anything back.

Resources
[1] Software Freedom Conservancy, “Frequently Asked Ques-
tions about Christoph Hellwig’s VMware Lawsuit”: http://
sfconservancy.org/linux-compliance/vmware-lawsuit-faq
.html.

[2] Jonathan Corbet, “A GPL-Enforcement Suit against
VMware: https://lwn.net/SubscriberLink/635290/
e501ce0264c182f4/.

