
16  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE

On Making GPFS Truly General
D E A N H I L D E B R A N D A N D F R A N K S C H M U C K

GPFS (also called IBM Spectrum Scale) began as a research project
that quickly found its groove supporting high performance comput-
ing (HPC) applications [1, 2]. Over the last 15 years, GPFS branched

out to embrace general file-serving workloads while maintaining its original
distributed design. This article gives a brief overview of the origins of numer-
ous features that we and many others at IBM have implemented to make
GPFS a truly general file system.

Early Days
Following its origins as a project focused on high-performance lossless streaming of multi-
media video files, GPFS was soon enhanced to support high performance computing (HPC)
applications, to become the “General Parallel File System.” One of its first large deployments
was on ASCI White in 2002—at the time, the fastest supercomputer in the world. This HPC-
focused architecture is described in more detail in a 2002 FAST paper [3], but from the outset
an important design goal was to support general workloads through a standard POSIX inter-
face—and live up to the “General” term in the name.

An early research prototype was based on an architecture similar to today’s HDFS and
pNFS, with a single server storing directories and handling metadata operations, redirect-
ing reads and writes to a separate set of data servers. While scaling well for sequential I/O
to large files, performance of metadata operations and small file workloads was typically
worse—or at least no better—than for a traditional file server. In other words, this early pro-
totype did not do the G in GPFS justice.

The improved design, which largely remains to this day, eliminates the single server bottle-
neck by managing both data and metadata in a fully distributed fashion across the whole
cluster. Both data and metadata are stored on shared storage devices that are equally acces-
sible from all cluster nodes. A distributed lock manager coordinates access to the file system,
implements a cache consistency protocol, and provides necessary synchronization for
proper POSIX semantics of individual file system operations. This allows each node to safely
modify metadata directly on disk instead of going through a separate metadata server. Over
the years, this original design has proven flexible enough to support numerous other applica-
tion domains, such as cloud computing, network attached storage (NAS), and analytics, as
shown in Figure 1.

The Basics
Since its beginnings, GPFS has been deployed on a wide range of cluster types and sizes, with
the larger clusters serving the scientific computing needs of national research laboratories,
small-to-medium-0sized clusters serving commercial HPC applications (e.g., oil explora-
tion and engineering design), and clusters as small as two nodes, where GPFS may be used
primarily for its fault-tolerance rather than scaling abilities (e.g., highly available database
server). The original design was targeted at storage area networks (SANs). Support for network
shared disk (NSD) access over TCP/IP and eventually InfiniBand via dedicated I/O server
nodes was added for increased scalability and flexibility. This then also enabled support for

Dean Hildebrand manages the
Cloud Storage Software team
at the IBM Almaden Research
Center and is a recognized
expert in the field of distributed

and parallel file systems. He pioneered pNFS,
demonstrating the feasibility of providing
standard and scalable access to any file
system. He received a BSc degree in computer
science from the University of British Columbia
in 1998 and a PhD in computer science from
the University of Michigan in 2007.
dhildeb@us.ibm.com

Frank Schmuck joined IBM
Research in 1988 after receiving
a PhD in computer science
from Cornell University. He is
a Distinguished Research Staff

Member at IBM’s Almaden Research Center,
where he serves as a Technical Leader of
the Parallel File Systems group and Principal
Architect of IBM’s General Parallel File System
(GPFS). His research interests include storage
systems, distributed systems, and fault
tolerance. fschmuck@us.ibm.com

www.usenix.org J U N E 20 1 5 VO L . 4 0, N O. 3 17

FILE SYSTEMS AND STORAGE
On Making GPFS Truly General

commodity clusters consisting of server nodes with internal
disks and SSDs.

The distributed locking architecture is a good match for scal-
able, general file-serving applications, especially for workloads
consisting of a large collection of independent working sets (e.g.,
different users accessing different sets of files). Once an applica-
tion has collected lock tokens that cover its working set from the
distributed lock manager, it can read, cache, and update all data
and metadata it needs independently, without any further inter-
action with other cluster nodes. In this manner, file access in
GPFS can be just as efficient as a local file system, but with the
ability to scale out by adding nodes and storage devices to meet
growing bandwidth and capacity demands.

The first major feature added to GPFS for general, non-HPC
workloads were read-only file system snapshots in 2003. This
is particularly useful for serving a large user data set, since it
allows an individual user to retrieve accidentally deleted files
without requiring administrator assistance. Initially limited
to 32 file system snapshots, the feature was later expanded to
larger numbers and finer-grained snapshots, including writable
snapshots of individual files.

At the same time, GPFS expanded its reach by extending its OS
and hardware support from AIX on IBM Power servers to Linux
on x86 and Power and later to Windows and Linux on main-
frames. While the initial Linux release in 2001 did not allow
mixing AIX and Linux in a single cluster, full heterogeneous
cluster support was added a couple years later.

Larger and more diverse clusters also required continuing
improvements in cluster management infrastructure. In 2004,
the external cluster manager used early on was replaced with
a built-in cluster manager using a more-scalable, hierarchical
architecture. A subset of designated “quorum nodes” is respon-
sible for ensuring system integrity by electing a unique cluster
leader, monitoring the status of all other nodes in the cluster,
and driving recovery in response to node failures. In 2007, sup-
port was added for rolling upgrades, allowing GPFS software
to be upgraded one node at a time without ever shutting down
the whole cluster, a critical feature for both HPC and general

computing alike. Other features added in subsequent years, or
actively being developed, include extended file attributes, a scal-
able backup solution, encryption, and compression.

Protecting Data, the Crown Jewels
The need for advanced data protection first became apparent in
the HPC context, but growing data volumes means that reliabil-
ity issues previously only seen in very large clusters now affect
general-purpose storage systems as well. Experiences with tra-
ditional RAID controllers in the GPFS deployment for the ASC
Purple supercomputer at Lawrence Livermore National Labora-
tory in 2005 had shown that when aggregating ~10,000 disks into
a single system, very rare failure events become frequent enough
that in these systems partial data loss became a real possibility.
These included double disk failures, loss of a RAID stripe due to
checksum errors during rebuild, off-track writes, and dropped
writes. Furthermore, since disk failures were constantly occur-
ring and their rebuild times were taking longer due to increased
disk capacity, the whole system was being slowed down.

To eliminate the drawbacks of hardware storage controllers, in
2011 GPFS introduced an advanced, declustered software RAID
algorithm integrated into its I/O servers, called GPFS Native
RAID (GNR) [4]. Apart from simple replication, GNR offers a
choice of Reed-Solomon erasure codes that tolerate up to three
concurrent failures. Data, parity, and spare space are distrib-
uted across large numbers of disks, speeding up rebuild times
with minimal impact on the foreground workload. Write version
numbers and end-to-end checksums allow GNR to detect and
recover from lost or misdirected writes, and care is taken to
ensure related erasure code strips are placed in separate hard-
ware failure domains, e.g., disk drawers, to improve availability.
A background scrubbing process verifies checksum and parity
values to detect and fix silent disk corruption or latent sector
errors before additional errors might render them uncorrectable.
The current implementation relies on a conventional, dual-
ported disk enclosure filled with disks in a JBOD (“just a bunch
of disks”) configuration to provide redundant paths to disk in
order to handle a failure of one of its primary I/O servers by a
designated backup server. A current research project is explor-
ing the use of internal disks by spreading data and parity across
disks in different server nodes (network RAID).

Now that GPFS no longer relies on storage controller hard-
ware, support was added for other “typical” storage controller
features, including the ability for data to be replicated across
different geographical locations for disaster recovery purposes.
For shorter distances, synchronous replication is performed
via standard GPFS data replication by creating a cluster that
stretches across nodes at multiple sites. For larger distances,
GPFS Active File Management (AFM), which was originally
designed for file caching across wide area networks, can be

Figure 1: IBM Research has prototyped the use of GPFS with numerous
APIs and storage devices within a single namespace, including the use of
Active File Management (AFM) to share data across WANs.

18  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE
On Making GPFS Truly General

configured to asynchronously replicate files between two file
systems at separate sites [5].

Pooling Your Data Without Getting Wet
In 2003, IBM introduced its Total Storage SAN File System
(SAN-FS) as a “file virtualization” solution for storage area
networks. From the outset, it was aimed at general commercial
applications, but soon also branched out into data-intensive
applications. By 2005, it became apparent that SAN-FS and
GPFS catered to increasingly overlapping market segments,
and IBM started an effort to merge the two product lines. This
lead to GPFS adopting some of the unique features of SAN-FS,
including native Windows support and, most notably, Informa-
tion Lifecycle Management (ILM) through the concepts of stor-
age pools and filesets [6].

Storage pools are a means of partitioning the storage devices
that make up a file system into groups with similar performance
and reliability characteristics. User-defined “placement policy”
rules allow assigning each file to a storage pool so as to match
application requirements to the most appropriate and cost-
effective type of storage. Periodically evaluated “management
policy” rules allow migrating files between pools as application
requirements change during the lifecycle of a file. Policy rules
may also change file replication; delete files; invoke arbitrary,
user-specified commands on a selected list of files; or migrate
rarely accessed data to an “external pool” for archival storage.
The policy language allows selecting files based on file attri-
butes, such as its name, owner, file size, and timestamps, as well
as extended attributes set by the user. Data migrated to external
storage either via policy or a traditional external storage man-
ager is recalled on demand using the standard Data Management
API (DMAPI).

Filesets provide a way to partition the file system namespace
into smaller administrative units. For example, the administra-
tor may define user and group quotas separately for each fileset
or place limits on the total amount of disk space occupied by files
in each fileset. GPFS also allows creating snapshots of individ-
ual filesets instead of a whole file system. Filesets also provide a
convenient way to refer to a collection of files in policy rules.

Three Amigos: NFS, SMB, and Object
A parallel file system provides a powerful basis for building
higher-level scalable, fault-tolerant services by running a service
instance on each cluster node. Since all nodes have equal access
to all file system content, an application workload can be distrib-
uted across the cluster in very flexible ways, and if one node fails,
the remaining nodes can take over. This is easiest to implement
for services that do not need to maintain any state outside of the
file system itself. The canonical example is an NFS file server,
due to the stateless nature of the NFSv3 protocol: servers run-

ning on different nodes in the cluster can simply export the same
file system without requiring any additional coordination among
the different servers. For client-side data caching, the NFS pro-
tocol relies on file modification time (mtime) maintained by the
file system, but since mtime is not critical for HPC applications,
GPFS only provided an approximate mtime value with eventual
consistency semantics. This was soon fixed since approximate
mtime is not sufficient to guarantee NFS close-to-open consis-
tency semantics: if a reader opens a file after a writer has closed
it, the reader should see the new file content.

An example of one of the first systems exploiting GPFS capa-
bilities to provide a scalable file server solution is the Global
Storage Architecture (GSA) service deployed within IBM start-
ing in 2002. This replaced the existing AFS and DCE-based
infrastructure, and is still actively used within IBM worldwide
today. To help customers implement similar solutions, we added
a “clustered NFS” (CNFS) feature to the base product, which
manages NFS server failover and failback, including IP address
takeover and lockd recovery.

While NFSv3 was nominally stateless, support for richer, state-
ful protocols like NFSv4 and the Windows Server Message Block
(SMB) make it harder to turn a single server into a scalable,
clustered solution. The simplest approach is to partition the
namespace across the cluster and let only one node at a time
serve files under each directory subtree. This avoids complex-
ity, but limits load balancing since a “hot” subtree may overload
its assigned node. A better approach is to add a clustering layer
for managing distributed, protocol-specific state above the file
system. The Clustered Trivial Database (CTDB) is just such a
layer, developed in collaboration with the open source commu-
nity, which integrates Samba servers running on different nodes
within a cluster into a single, scalable SMB server. A scalable
NFS and SMB file-serving solution based on this technology
was made available as an IBM service offering in 2007 and as a
NAS appliance in 2011.

One downside with layering protocol-specific cluster managers
on top of a parallel file system is a lack of coordination between
different protocols. For example, a file lock granted to an SMB
client will not be respected by a client accessing the same file
over NFS or by an application running on one of the nodes in the
cluster accessing the file directly. So a third approach to imple-
menting richer services is to add functionality to the file system
for maintaining protocol-specific state consistently across
the cluster. By taking advantage of features originally added
for the GPFS Windows client, such as a richer ACL model and
extensions to the GPFS distributed lock manager to implement
Windows share-modes, the NFS server can implement features
such as delegations, open modes, and ACLs—without a separate
clustering layer. An immediate advantage is better coordination

www.usenix.org J U N E 20 1 5 VO L . 4 0, N O. 3 19

FILE SYSTEMS AND STORAGE
On Making GPFS Truly General

between NFS clients and file access via SMB, FTP, and HTTP
protocols.

In 2014, GPFS provided support for OpenStack Swift [7], which
provides a stateless clustered layer for REST-based data access
through protocols such as Swift and S3. Object storage systems
have a lot in common with HPC, as they tend to have a large
capacity (several PBs and larger), have a high number of simul-
taneous users, and span multiple sites. Many GPFS features
have a direct benefit in this new domain, including scalable file
creation and lookup, data tiering and information lifecycle man-
agement, GNR software-based erasure coding, and snapshots.
Support for Swift does much more than provide a simplified
method for data access; it includes several new features such as
secure and multi-tenant access to data, role-based authentica-
tion, REST-based storage management, and a simplified flat
namespace. All objects are stored as files, which enables native
file access (e.g., Hadoop, NFS, SMB, POSIX) to objects without
a performance-limiting gateway daemon. This capability means
that objects within GPFS aren’t in their own island of storage,
but are integrated into a user’s entire workflow.

Branching out from HPC to NAS and object storage provided an
impetus for numerous improvements in GPFS to handle small-
file and metadata-intensive workloads more efficiently. Allow-
ing data of small files to be stored in the file inode instead of a
separate data block improves storage efficiency and reduces the
number of I/Os to access small file data. Keeping metadata for
a large number of files cached in memory proved vital for good
NAS performance, but put a greater load on the token server for
each file system. GPFS therefore introduced a new token proto-
col that uses consistent hashing to distribute tokens for all file
systems across any number of nodes in the cluster. Since GPFS
records metadata updates in a per-node recovery log, metadata
commits can be sped up by placing recovery logs in a dedicated
storage pool of fast storage devices. As wider use of fast storage
devices eliminates the devices itself as the performance limiting
factor, the efficiency of the file system software stack as a whole
becomes increasingly important, with particular attention
required to minimizing overhead for synchronizing access to in-
memory data structures on modern NUMA architectures.

Cloudy with a Chance of High-Performance
In 2014, there was a shift towards delivering open systems and
software-defined-storage to customers. This shift was primarily
motivated by customers frustrated with vendor lock-in, lack of
ability to customize a solution, and also the desire (primarily for
cost reasons) to leverage commodity hardware.

The OpenStack project fits well with this new way of think-
ing, offering an open cloud management framework that allows
vendors to plug into myriad APIs. Beyond supporting the Swift
object storage layer discussed previously, we have integrated

support for Nova (which provisions and manages large networks
of VMs), Glance (the VM image repository), and Cinder (which
provides block-based storage management for VMs). Most
recently, we delivered a driver for Manila, which allows users
to provision file-based data stores to a set of tenants, and we
are currently investigating support for Sahara, the easy to use
analytics provisioning project.

Initially, there was some concern that using a file system for all
of these services was not a good fit, but we found the more we
integrate GPFS with all of the OpenStack services, the more
benefits arise from using a single data store. Workflows can now
be implemented (and automated) where files and data stores are
provisioned and utilized by applications and VMs with zero-
data movement as the workflow shifts from one management
interface to the next. In another example, AFM can be leveraged
to build a hybrid cloud solution by migrating OpenStack data to
the cloud and then back again as needed.

Virtualization, and its use in the cloud, has also introduced a
relatively new I/O workload that is much different than both
NAS workloads, which primarily perform metadata-intensive
operations, and HPC workloads, which do large writes to large
files. VMs write small, random, and synchronous requests to
relatively large (8–80 GB) disk image files [8]. To support this
workload, we implemented a Highly Available Write Cache
(HAWC), which allows buffering of small VM writes in fast
storage, allowing them to be gathered into larger chunks in
memory before being written to the disk subsystem. Further, we
increased the granularity at which GPFS tracks changes to a file
to avoid unnecessary read-modify-write sequences that never
occurred previously in HPC workloads.

Moving forward, as public and private clouds continue to emerge,
and more and more applications make the transition (includ-
ing HPC applications), new requirements are emerging above
and beyond being able to deliver high performance data access.
One area that has a much different model from HPC is security
and management. The “trusted root” model common in HPC
datacenters is rarely acceptable, replaced by a more fine-grained
and scalable role-based management model that can support
multiple tenants and allow them to manage their own data. For
management, supporting a GUI and REST-API is no longer just
nice to have, as is an audit log for retracing operations performed
on the system. As well, scaling existing monitoring tools and
delivering higher-level insights on system operation will be key
features of any cloud storage system.

Another area of interest is data capacity, where HPC has tradi-
tionally led the way, but cloud computing is catching up and is
possibly poised to overtake HPC in the near future. For example,
some cloud datacenters are scaling by up to 100 PB per year. The
challenge for GPFS is less about figuring out how to store all that
data (the GPFS theoretical limit on the number of files in a single

20  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

FILE SYSTEMS AND STORAGE
On Making GPFS Truly General

file system is 264, after all), but more about providing a highly
available system at scale that can be efficiently managed. For
the issue of storing trillions of files, the classical hierarchical
file-system directory structure, no matter how scalable, is not an
intuitive method for organizing and finding data. GPFS support
for object storage improves this by introducing both a simpler flat
namespace as well as a database for faster indexing and search-
ing. For the issue of high availability, the impact of catastrophic
failure must be limited at any level of the software and hardware
stack. To do this, failure domains must be created at every level
of the software stack, including the file system, such that when a
catastrophic failure occurs in one failure domain, the remaining
failure domains remain available to users.

Analyze This (and That)
When analytics frameworks like Hadoop (and its file system
HDFS) started, they focused on a specific class of problems that
exploited locality to scale I/O bandwidth. So to support analyt-
ics, a Hadoop connector was implemented and a few key changes
were made to GPFS to support storage rich servers. First, we
increased the maximum replication from two to three, which
was primarily a testing effort, and ensured one of those replicas
was stored on the local server. Second, the traditional parallel
file system method of striping small (1 MB) chunks across the
entire cluster would overflow network switches, so block groups
were introduced to allow striping in much larger chunks (128
MB). Third, failure groups were extended to understand network
hierarchies, instead of just the flat networks common in HPC.

Recently, a shift has occurred that brings new life to running
analytics on the original GPFS architecture. The combination

of cheaper, fast networks with the emergence of new analytic
workloads such as Hive and HBase mitigates the benefit of data
locality in many cases. These workloads perform smaller and
more random I/O, benefiting from the scalable metadata and
optimized data path in GPFS. In addition, support for POSIX
semantics (and therefore in-place updates) allows a wide range
of such analytics workloads to be developed.

Conclusion
GPFS represents a very fruitful and successful collaboration
between IBM Research and Product divisions, with customer
experiences providing a rich source of interesting and challenging
research problems, and research helping to rapidly bring advanced
technology to the customer. Living up to the G in GPFS has thus
been a fun if not always an easy or straightforward journey.

Looking ahead, GPFS will continue to evolve and strengthen
its support for all types of enterprise workloads, enabling users
to have a single common data plane (aka “data lake”) for all of
their application requirements. In HPC, GPFS has recently been
chosen as the file system in two petaflop supercomputers set to
go online in 2017 [9], whose “data-centric” design is a milestone
in the path towards exascale computing. Simultaneously, GPFS’s
trip into the cloud is yielding exciting new features and function-
ality addressing new and evolving storage needs.

References
[1] IBM Spectrum Scale: www-03.ibm.com/systems/storage/
spectrum/scale.

[2] D. Hildebrand, F. Schmuck, “GPFS,” in Prabhat and Q. Koziol
(eds), High Performance Parallel I/O (Chapman and Hall/CRC,
2014), pp. 107–118.

[3] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in Proceedings of the 1st USE-
NIX Conference on File and Storage Technologies (FAST ’02),
2002: https://www.usenix.org/legacy/events/fast02/schmuck
.html.

[4] IBM, GPFS Native RAID Version 4 Release 1.0.5, Admin-
istration, 2014: http://publib.boulder.ibm.com/epubs/pdf/
c2766580.pdf.

[5] M. Eshel, R. Haskin, D. Hildebrand, M. Naik, F. Schmuck, R.
Tewari, “Panache: A Parallel File System Cache for Global File
Access,” in Proceedings of the Eighth USENIX Conference on

File and Storage Technologies (FAST ’10), 2010: https://www
.usenix.org/legacy/events/fast10/tech/full_papers/eshel.pdf.

[6] IBM, General Parallel File System Version 4 Release 1.0.4,
Advanced Administration Guide, (SC23-7032-01), 2014: http://
publib.boulder.ibm.com/epubs/pdf/c2370321.pdf.

[7] IBM, “A Deployment Guide for IBM Spectrum Scale Object”:
http://www.redbooks.ibm.com/abstracts/redp5113.html?Open.

[8] Vasily Tarasov, Dean Hildebrand, Geoff Kuenning, Erez
Zadok, “Virtual Machine Workloads: The Case for New
Benchmarks for NAS,” in Proceedings of the Eleventh USENIX
Conference on File and Storage Technologies (FAST ’13), 2013:
https://www.usenix.org/conference/fast13/technical-sessions/
presentation/tarasov.

[9] IBM and Nvidia to Build 100 Petaflop Supercomputers,
November 2014: http://www.vrworld.com/2014/11/14/
ibm-and-nvidia-to-build-100-petaflop-supercomputers.

Do you know about the
USENIX Open Access Policy?

USENIX is the first computing association to offer free and open
 access to all of our conference proceedings and videos. We stand
by our mission to foster excellence and innovation while supporting
research with a practical bias. Your financial support plays a major
role in making this endeavor successful.

Please help to us to sustain and grow our open access program.
 Donate to the USENIX Annual Fund, renew your membership, and
ask your colleagues to join or renew today.

www.usenix.org/annual-fund

