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Estimating the performance impact of caching on storage workloads 
is an important and challenging problem. Miss ratio curves (MRCs) 
provide valuable information about cache utility, enabling efficient 

cache sizing and dynamic allocation decisions. Unfortunately, computing 
exact MRCs is too expensive for practical online applications. We introduce 
a novel approximation algorithm called SHARDS that leverages uniform 
randomized spatial sampling to construct surprisingly accurate MRCs using 
only modest computational resources. Operating in constant space and lin-
ear time, SHARDS makes online MRC generation practical for even the most 
constrained computing environments.

Caches designed to accelerate data access by exploiting locality are pervasive in modern 
systems. Operating systems and databases maintain in-memory buffer caches containing 
“hot” blocks considered likely to be reused. Server-side or networked storage caches using 
flash memory are popular as a cost-effective way to reduce application latency and offload 
work from rotating disks. Virtually all storage devices—ranging from individual disk drives 
to large storage arrays—include significant caches composed of RAM or flash memory. 

Since cache space consists of relatively fast, expensive storage, it is inherently a scarce 
resource and is commonly shared among multiple clients. As a result, optimizing cache allo-
cations is important. Today, administrators or automated systems seeking to optimize cache 
allocations are forced to resort to simple heuristics, or to engage in trial-and-error tests. 
Both approaches to performance estimation are problematic.

Heuristics simply don’t work well for cache sizing, since they cannot capture the temporal 
locality profile of a workload. Without knowledge of marginal benefits, for example, doubling 
(or halving) the cache size for a given workload may change its performance only slightly, or 
by a dramatic amount.

Trial-and-error tests that vary the size of a cache and measure the effect are not only time-
consuming and expensive, but also present significant risk to production systems. Correct 
sizing requires experimentation across a range of cache allocations; some might induce 
thrashing and cause a precipitous loss of performance. Long-running experiments required 
to warm up caches or to observe business cycles may exacerbate the negative effects. In prac-
tice, administrators rarely have time for this. Resigned to severe imbalances in cache utility, 
they often end up buying additional hardware.

The ideal approach is estimating workload performance as a function of cache size by 
modeling its inherent temporal locality; in other words, by incorporating information about 
the reuse of blocks. As the workload accesses each individual block, its reuse distance—the 
number of other unique intervening blocks referenced since its previous use—is captured 
and accumulated in a histogram. The complete miss ratio curve (MRC) for a workload is 
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computed directly from its reuse-distance histogram. Unfortu-
nately, even the most efficient exact implementations for MRC 
construction are too heavyweight for practical online use in 
production systems.

Figure 1 shows an example MRC, which plots the ratio of cache 
misses to total references for a workload (y-axis) as a function 
of cache size (x-axis). The higher the miss ratio, the worse the 
performance; the miss ratio decreases as cache size increases. 
MRCs come in many shapes and sizes, and represent the histori-
cal cache behavior of a particular workload. This particular 
MRC reveals a staircase pattern representing knees in the 
working set: the first 2 GB of cache provide a large improvement, 
followed by a flat region for the next 8 GB, then another dropoff, 
and so on. Cache performance is highly nonlinear, so identifying 
such knees is critical for making efficient allocation and parti-
tioning decisions.

Assuming some level of stationarity in the workload pattern at 
the time scale of interest, the workload’s MRC can be used to 
predict its future cache performance. An administrator can use 
a system-wide miss ratio curve to help determine the aggregate 
amount of cache space to provision for a desired improvement 
in overall system performance. Similarly, an automated cache 
manager can utilize separate MRCs for multiple workloads of 
varying importance, optimizing cache allocations dynamically 
to achieve service-level objectives.

MRC Construction
In their seminal paper, Mattson, Gecsei, Slutz, and Traiger [1] 
proposed a technique to generate models of behavior for all cache 
sizes in a single pass. Since then, Mattson’s technique has been 
applied widely. However, the computation and space required to 
generate such MRCs have been prohibitive. For a trace of length 
N containing M unique references, the most efficient exact 
implementations of this algorithm have an asymptotic cost of 
O(N log M) time and O(M) space [4].

Given the nonlinear computation cost and unbounded memory 
requirements, it is impractical to perform real-time analysis in 

production systems. Even when processing can be delayed and 
performed offline from a trace file, memory requirements may 
still be excessive. For example, we have collected many traces 
for which conventional MRC construction does not fit in 64 GB 
RAM. This is especially important when modeling large storage 
caches; in contrast to RAM-based caches, affordable flash cache 
capacities often exceed 1 TB, requiring many gigabytes of RAM 
for traditional MRC construction.

The limitations of existing MRC algorithms led us to consider 
a very simple idea. What if we place a filter in front of a conven-
tional MRC algorithm to randomly sample only a small subset of 
its input blocks, and run the full algorithm over these samples? 
The question was whether or not this would be sufficiently effi-
cient and accurate for practical use.

Our answer to this question is a new algorithm based on 
spatially hashed sampling called SHARDS (Spatially Hashed 
Approximate Reuse Distance Sampling) [7]. SHARDS runs in 
constant space and linear time by tracking only references to 
representative locations, selected dynamically based on a func-
tion of their hash values.

Randomized spatial sampling allows SHARDS to use several 
orders of magnitude less space and time than exact methods, 
making it inexpensive enough for practical online MRC con-
struction in high-performance systems. The dramatic space 
reductions also enable analysis of long traces that is not fea-
sible with exact methods. Traces that consume many gigabytes 
of RAM to construct exact MRCs require less than 1 MB for 
accurate approximations. The low cost even enables concurrent 
evaluation of different cache configurations (e.g., block size or 
write policy) using multiple SHARDS instances.
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Figure 1: Example MRC. A miss ratio curve plots the ratio of cache misses 
to total references, as a function of cache size. Lower is better.

Figure 2: SHARDS algorithm overview. SHARDS filters the input to a 
standard reuse-distance algorithm using spatially hashed sampling. Each 
input location Li is mapped to a hash value Ti, which is compared to a 
global threshold T that determines the sampling rate R. The threshold is 
lowered progressively as needed to maintain a fixed bound on the size of 
the sample set, smax.
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SHARDS Algorithm
The SHARDS algorithm, shown in Figure 2, is conceptually 
simple. A hash function takes each referenced location Li, such 
as a logical block number (LBN), and maps it to a hash value Ti, 
that is uniformly distributed over the range [0, P), depicted as 
painting each location with a random color.

A global threshold T is used to divide the hash value space into 
two partitions, or “shards.” Locations that hash to values below 
the threshold are sampled, and others are filtered out. The sam-
pling rate R is simply the fraction of the hash value space that 
is sampled. In practice, typical sampling rates are significantly 
lower than 1%. More generally, using the sampling condition 
hash(L) mod P < T, with modulus P and threshold T, the effective 
sampling rate is R = T/P, and each sample represents 1/R loca-
tions, in a statistical sense. In practice, each sample typically 
represents hundreds or thousands of locations.

For the basic SHARDS algorithm, we simply take this spatial 
sampling filter, and place it in front of a standard reuse-distance 
algorithm, effectively scaling down its inputs by a factor of R. We 
then take the reuse distances output by the algorithm, and scale 
them back up, to reflect the sampling rate R.

This method has several desirable properties. As required for 
reuse distance computations, it ensures that all accesses to the 
same location will be sampled, since they will have the same 
hash value. It does not require any prior knowledge about the 
system, its workload, or the location address space. In particu-
lar, no information is needed about the set of locations that may 
be accessed by the workload, nor the distribution of accesses 
to these locations. As a result, SHARDS sampling is effectively 
stateless. In contrast, explicitly preselecting a random subset 
of locations may require significant storage, especially if the 
location address space is large. Often, only a small fraction of 
this space is accessed by the workload, making such preselection 
especially inefficient.

Although this basic approach can reduce the time and space 
required to generate an MRC by several orders of magnitude, 
it can still be improved. First, the required space grows slowly, 
but isn’t bounded, making it hard to use in memory-constrained 
environments. Second, choosing an appropriate sampling rate 
can be challenging, since it implies an accuracy versus overhead 
tradeoff that can be difficult to evaluate, especially in an online 
system.

To address these issues, we developed a fixed-size version of 
SHARDS that operates in constant space. The basic idea is that 
instead of specifying the sampling rate R, we specify a maxi-
mum number of samples to track, smax. Placing a hard bound on 
the sample set results in a constant-space algorithm. The basic 
spatial filtering step operates exactly the same as before. But 

now, if adding a new sample would exceed the space bound smax, 
some existing sample must be evicted to make room.

We remove the sample with the maximum hash value, Tmax, clos-
est to T. The global threshold T is then lowered to Tmax since any 
larger values cannot fit in the set, reducing the sampling rate R 
dynamically. When the threshold is lowered, a subset-inclusion 
property is maintained automatically; each location sampled 
after lowering the rate would also have been sampled prior to 
lowering the rate.

The subset-inclusion property is leveraged to lower the sampling 
rate adaptively as more unique locations are encountered, in 
order to maintain a fixed bound on the total number of samples 
that are tracked at any given point in time. The sampling rate is 
initialized to a high value; in practice R0 = 0.1 is sufficiently high 
to achieve good results with nearly any workload.

As the rate is reduced, the counts associated with earlier updates 
to the reuse-distance histogram need to be adjusted. Ideally, the 
effects of all updates associated with an evicted sample should 
be rescaled exactly. Since this would incur significant space and 
processing costs, we opt for a simple approximation.

When the threshold is reduced, the count associated with each 
histogram bucket is scaled by the ratio of the new and old sam-
pling rates, Rnew  / Rold, which is equivalent to the ratio of the new 
and old thresholds, Tnew  / Told. Rescaling makes the simplifying 
assumption that previous references to an evicted sample con-
tributed equally to all existing buckets—a reasonable statistical 
approximation when viewed over many sample evictions and 
rescaling operations. Rescaling is performed incrementally and 
inexpensively, and ensures that subsequent references to the 
remaining samples have the appropriate relative weight associ-
ated with their corresponding histogram bucket increments.

Evaluating SHARDS
With a constant memory footprint, SHARDS is suitable for 
online use in memory-constrained systems, such as device 
drivers in embedded systems. To explore such applications, we 
developed a high-performance implementation, written in C, 
and optimized for space efficiency. With our default setting of 
smax = 8K, the entire measured runtime footprint—including code 
size, stack space, and all other memory usage—is smaller than 
1 MB, making this implementation practical even for extremely 
memory-constrained execution environments.

We have deployed SHARDS in the context of the commercial 
CloudPhysics I/O caching analytics service for virtualized 
environments. Our system streams compressed block I/O traces 
for VMware virtual disks from customer datacenters to a cloud-
based backend that constructs approximate MRCs efficiently. 
A Web-based interface reports expected cache benefits, such as 
the cache size required to reduce average I/O latency by speci-
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fied amounts. Running this service, we have accumulated a large 
number of production traces from customer environments.

We analyzed 106 week-long traces, collected from virtual disks 
in production customer environments with sizes ranging from 
8 GB to 34 TB, with a median of 90 GB. The associated vir-
tual machines were a mix of Windows and Linux, with up to 
64 GB RAM (6 GB median) and up to 32 virtual CPUs (2 vCPUs 
median). In addition, we used 18 publicly available block I/O 
traces from the SNIA IOTTA repository [6], including a dozen 
week-long enterprise server traces collected by Microsoft 
Research Cambridge [3].

In total, we analyzed a diverse set of 124 real-world block I/O 
traces to evaluate the accuracy and performance of SHARDS 
compared to exact methods. For each experiment, we modeled a 
simple LRU cache replacement policy, with a 16 KB cache block 
size—typical for storage cache configurations in commercial 
virtualized systems.

To quantify the accuracy of SHARDS, we considered the dif-
ference between each approximate MRC, constructed using 
spatially hashed sampling, and its corresponding exact MRC, 
generated from a complete reference trace. An intuitive measure 
of this distance, also used to quantify error in related work, is the 
mean absolute difference or error (MAE) between the approxi-
mate and exact MRCs across several different cache sizes. This 
difference is between two values in the range [0, 1], so an abso-
lute error of 0.01 represents 1% of that range.

The box plots in Figure 3 show the MAE metric for a wide range 
of SHARDS sample set sizes (smax ). For each trace, this distance 
is computed over all discrete cache sizes, at 64 MB granularity, 
corresponding to all non-zero histogram buckets. Overall, the 
average error is extremely low. For smax = 8K, the median MAE is 
0.0027, with a worst case of 0.017. The error for tiny sample sizes 
is also surprisingly small. For example, with only 256 samples, 
the error for 75% of the traces is below 0.02, although there are 
many outliers.

Many statistical methods exhibit sampling error inversely pro-
portional to √n, where n is the sample size. Our data is consistent; 
regressing the average absolute error for each smax value shown in 
Figure 3 against 1/√smax resulted in a high correlation coefficient 
of r2 = 0.98. This explains the observed diminishing accuracy 
improvements with increasing smax.

Why does SHARDS work so well, even with small sample sizes 
and correspondingly low sampling rates? Our intuition is that 
most workloads are composed of a fairly small number of basic 
underlying processes, each of which operates somewhat uni-
formly over relatively large amounts of data. As a result, a small 
number of representative samples is sufficient to model the main 
underlying processes. Additional samples are needed to properly 
capture the relative weights of these processes. Interestingly, the 
number of samples required to obtain accurate results for a given 
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Figure 3: Error analysis. Mean absolute error calculated over all 124 traces 
for different SHARDS sample set sizes. The top and bottom of each box 
represents the first and third quartile values of the error; the thick black 
line is the median. The thin whiskers represent the min and max error, 
excluding outliers, which are represented by dots.
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Figure 4: Example MRCs: exact vs. SHARDS. Exact and approximate 
MRCs for 12 representative traces. Approximate MRCs are constructed 
using SHARDS with smax = 8K. Trace names are shown for three public MSR 
traces [3]; others are anonymized. The effective sampling rates appear in 
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workload may be indicative of its underlying dimensionality or 
intrinsic complexity.

Figure 4 provides further qualitative evidence of SHARDS 
accuracy for a dozen representative traces. In most cases, the 
approximate and exact MRCs are nearly indistinguishable. 
Each plot is annotated with the effective dynamic sampling 
rate, indicating the fraction of I/Os processed, including evicted 
samples. This rate reflects the amount of processing required to 
construct the MRC.

Overall, quantitative experiments confirm that, for all work-
loads, SHARDS yields accurate MRCs, in radically less time 
and space than conventional exact algorithms. Compared to the 
sequential implementation of PARDA [4], a modern high-perfor-
mance reuse-distance algorithm, SHARDS requires dramati-
cally less memory and processing resources. For our trace set, 
we measured memory reductions by a factor of up to 10,800x for 
large traces, and a median of 185x across all traces. The compu-
tation cost was also reduced up to 204x for large traces, with a 
median of 22x. For large traces, SHARDS throughput exceeds 17 
million references per second.

Renewed Interest in MRCs
Recently, there has been renewed interest in algorithms for effi-
cient MRC construction, using a variety of different techniques, 
which has been very exciting to see. For example, Saemundsson 
et al. [5] grouped references into variable-sized buckets. Their 
ROUNDER aging algorithm with 128 buckets yields MAEs up 
to 0.04 with a median MAE of 0.006 for partial MRCs, but the 
space complexity remains O(M).

Wires et al. recently created an alternate way of computing 
MRCs using a counter stack [8]. In the closest matching test case 
using the same large trace and an identical cache configura-
tion, Counter Stacks is more than 7x slower and needs 62x as 
much memory as SHARDS with smax = 8K. In this case, Counter 
Stacks is more accurate, with an MAE of only 0.0025, compared 
to 0.0061 for SHARDS. Using smax = 32K, with a 2 MB memory 
footprint, SHARDS yields a comparable MAE of 0.0026, still 
approximately 7x faster, with a  40x smaller footprint. While 
Counter Stacks uses O( log M) space, SHARDS computes MRCs 
in small constant space. As a result, it is practical to use separate, 
potentially concurrent SHARDS instances to efficiently com-
pute multiple MRCs tracking different properties or time-scales 
for a given reference stream.

Scaled-Down Simulation
Like other algorithms based on Mattson’s single-pass method 
[1], SHARDS constructs MRCs for caches that use a stack-algo-
rithm replacement policy, such as LRU. Significantly, the same 
underlying spatial sampling approach can be used to simulate 
more sophisticated policies, such as ARC [2], for which there are 
no known single-pass methods to speed up analysis.

Our approach is to simulate each cache size separately, while 
scaling down the simulations to regain efficiency. As with basic 
SHARDS, input references are filtered using a hash-based sam-
pling condition, corresponding to the sampling rate R. A series 
of separate simulations is run, each using a different cache size, 
which is also scaled down by R. Figure 5 presents both exact 
and scaled-down sampled MRCs for the public MSR web block 
trace [3], for 64 simulated ARC cache sizes. With R = 0.001, the 
simulated cache is only 0.1% of the desired cache size, achieving 
huge reductions in space and time, while exhibiting excellent 
accuracy, with an MAE of 0.002.

Encouraged by our results from generalizing hash-based spatial 
sampling to model sophisticated cache replacement policies, we 
are exploring similar techniques for other complex systems. We 
are also examining the rich temporal dynamics of MRCs at dif-
ferent time scales.

Figure 5: Scaled-down ARC simulation. Exact and approximate MRCs for 
the MSR-web disk trace [3]. Each curve plots 64 separate ARC simula-
tions at different cache sizes.
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