
22    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE

Beyond Working Sets
Online MRC Construction with SHARDS

C A R L A . W A L D S P U R G E R , N O H H Y U N P A R K , A L E X A N D E R G A R T H W A I T E , A N D I R F A N A H M A D

Estimating the performance impact of caching on storage workloads
is an important and challenging problem. Miss ratio curves (MRCs)
provide valuable information about cache utility, enabling efficient

cache sizing and dynamic allocation decisions. Unfortunately, computing
exact MRCs is too expensive for practical online applications. We introduce
a novel approximation algorithm called SHARDS that leverages uniform
randomized spatial sampling to construct surprisingly accurate MRCs using
only modest computational resources. Operating in constant space and lin-
ear time, SHARDS makes online MRC generation practical for even the most
constrained computing environments.

Caches designed to accelerate data access by exploiting locality are pervasive in modern
systems. Operating systems and databases maintain in-memory buffer caches containing
“hot” blocks considered likely to be reused. Server-side or networked storage caches using
flash memory are popular as a cost-effective way to reduce application latency and offload
work from rotating disks. Virtually all storage devices—ranging from individual disk drives
to large storage arrays—include significant caches composed of RAM or flash memory.

Since cache space consists of relatively fast, expensive storage, it is inherently a scarce
resource and is commonly shared among multiple clients. As a result, optimizing cache allo-
cations is important. Today, administrators or automated systems seeking to optimize cache
allocations are forced to resort to simple heuristics, or to engage in trial-and-error tests.
Both approaches to performance estimation are problematic.

Heuristics simply don’t work well for cache sizing, since they cannot capture the temporal
locality profile of a workload. Without knowledge of marginal benefits, for example, doubling
(or halving) the cache size for a given workload may change its performance only slightly, or
by a dramatic amount.

Trial-and-error tests that vary the size of a cache and measure the effect are not only time-
consuming and expensive, but also present significant risk to production systems. Correct
sizing requires experimentation across a range of cache allocations; some might induce
thrashing and cause a precipitous loss of performance. Long-running experiments required
to warm up caches or to observe business cycles may exacerbate the negative effects. In prac-
tice, administrators rarely have time for this. Resigned to severe imbalances in cache utility,
they often end up buying additional hardware.

The ideal approach is estimating workload performance as a function of cache size by
modeling its inherent temporal locality; in other words, by incorporating information about
the reuse of blocks. As the workload accesses each individual block, its reuse distance—the
number of other unique intervening blocks referenced since its previous use—is captured
and accumulated in a histogram. The complete miss ratio curve (MRC) for a workload is

Carl Waldspurger has been
conducting research at
CloudPhysics since its
inception. Carl has a PhD in
computer science from MIT.

His research interests include resource
management, virtualization, security, data
analytics, and computer architecture.
carl@cloudphysics.com

Nohhyun Park is a Software
Engineer at CloudPhysics
working on data analytics and
the supporting pipeline. He has
a PhD in electrical and

computer engineering from the University of
Minnesota and is interested in workload
characterization and performance modeling for
large-scale systems.
nohhyun@cloudphysics.com

Alexander Garthwaite is a
Software Engineer at Twitter
and an advisor to CloudPhysics.
Alex has a PhD in computer
and information science from

the University of Pennsylvania. His interests
include resource management, virtualization,
programming language implementation, and
computer architecture.
alex@cloudphysics.com

Irfan Ahmad is the CTO and
cofounder of CloudPhysics.
Irfan works on interdisciplinary
endeavors in memory, storage,
CPU, and distributed resource

management. He has published at ACM SOCC
(best paper), USENIX ATC, FAST, IISWC, etc.
He has chaired HotCloud, HotStorage, and
VMware’s Innovation Conference.
irfan@cloudphysics.com

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  23

FILE SYSTEMS AND STORAGE
Beyond Working Sets: Online MRC Construction with SHARDS

computed directly from its reuse-distance histogram. Unfortu-
nately, even the most efficient exact implementations for MRC
construction are too heavyweight for practical online use in
production systems.

Figure 1 shows an example MRC, which plots the ratio of cache
misses to total references for a workload (y-axis) as a function
of cache size (x-axis). The higher the miss ratio, the worse the
performance; the miss ratio decreases as cache size increases.
MRCs come in many shapes and sizes, and represent the histori-
cal cache behavior of a particular workload. This particular
MRC reveals a staircase pattern representing knees in the
working set: the first 2 GB of cache provide a large improvement,
followed by a flat region for the next 8 GB, then another dropoff,
and so on. Cache performance is highly nonlinear, so identifying
such knees is critical for making efficient allocation and parti-
tioning decisions.

Assuming some level of stationarity in the workload pattern at
the time scale of interest, the workload’s MRC can be used to
predict its future cache performance. An administrator can use
a system-wide miss ratio curve to help determine the aggregate
amount of cache space to provision for a desired improvement
in overall system performance. Similarly, an automated cache
manager can utilize separate MRCs for multiple workloads of
varying importance, optimizing cache allocations dynamically
to achieve service-level objectives.

MRC Construction
In their seminal paper, Mattson, Gecsei, Slutz, and Traiger [1]
proposed a technique to generate models of behavior for all cache
sizes in a single pass. Since then, Mattson’s technique has been
applied widely. However, the computation and space required to
generate such MRCs have been prohibitive. For a trace of length
N containing M unique references, the most efficient exact
implementations of this algorithm have an asymptotic cost of
O(N log M) time and O(M) space [4].

Given the nonlinear computation cost and unbounded memory
requirements, it is impractical to perform real-time analysis in

production systems. Even when processing can be delayed and
performed offline from a trace file, memory requirements may
still be excessive. For example, we have collected many traces
for which conventional MRC construction does not fit in 64 GB
RAM. This is especially important when modeling large storage
caches; in contrast to RAM-based caches, affordable flash cache
capacities often exceed 1 TB, requiring many gigabytes of RAM
for traditional MRC construction.

The limitations of existing MRC algorithms led us to consider
a very simple idea. What if we place a filter in front of a conven-
tional MRC algorithm to randomly sample only a small subset of
its input blocks, and run the full algorithm over these samples?
The question was whether or not this would be sufficiently effi-
cient and accurate for practical use.

Our answer to this question is a new algorithm based on
spatially hashed sampling called SHARDS (Spatially Hashed
Approximate Reuse Distance Sampling) [7]. SHARDS runs in
constant space and linear time by tracking only references to
representative locations, selected dynamically based on a func-
tion of their hash values.

Randomized spatial sampling allows SHARDS to use several
orders of magnitude less space and time than exact methods,
making it inexpensive enough for practical online MRC con-
struction in high-performance systems. The dramatic space
reductions also enable analysis of long traces that is not fea-
sible with exact methods. Traces that consume many gigabytes
of RAM to construct exact MRCs require less than 1 MB for
accurate approximations. The low cost even enables concurrent
evaluation of different cache configurations (e.g., block size or
write policy) using multiple SHARDS instances.

0.0

0.2

0.4

0.6

0.8

 0 5 10 15 20

M
is

s
R

at
io

Cache Size (GB)

Figure 1: Example MRC. A miss ratio curve plots the ratio of cache misses
to total references, as a function of cache size. Lower is better.

Figure 2: SHARDS algorithm overview. SHARDS filters the input to a
standard reuse-distance algorithm using spatially hashed sampling. Each
input location Li is mapped to a hash value Ti, which is compared to a
global threshold T that determines the sampling rate R. The threshold is
lowered progressively as needed to maintain a fixed bound on the size of
the sample set, smax.

randomize scale upsample? compute distance

Li

hash(Li) mod P

Ti < T
yes Standard

Reuse Distance
Algorithm

 ÷ R

sample set

evict samples to bound set size

lower threshold T = Tmax
reduces rate R = T / P

T
0 P

Tmax

24    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Beyond Working Sets: Online MRC Construction with SHARDS

SHARDS Algorithm
The SHARDS algorithm, shown in Figure 2, is conceptually
simple. A hash function takes each referenced location Li, such
as a logical block number (LBN), and maps it to a hash value Ti,
that is uniformly distributed over the range [0, P), depicted as
painting each location with a random color.

A global threshold T is used to divide the hash value space into
two partitions, or “shards.” Locations that hash to values below
the threshold are sampled, and others are filtered out. The sam-
pling rate R is simply the fraction of the hash value space that
is sampled. In practice, typical sampling rates are significantly
lower than 1%. More generally, using the sampling condition
hash(L) mod P < T, with modulus P and threshold T, the effective
sampling rate is R = T/P, and each sample represents 1/R loca-
tions, in a statistical sense. In practice, each sample typically
represents hundreds or thousands of locations.

For the basic SHARDS algorithm, we simply take this spatial
sampling filter, and place it in front of a standard reuse-distance
algorithm, effectively scaling down its inputs by a factor of R. We
then take the reuse distances output by the algorithm, and scale
them back up, to reflect the sampling rate R.

This method has several desirable properties. As required for
reuse distance computations, it ensures that all accesses to the
same location will be sampled, since they will have the same
hash value. It does not require any prior knowledge about the
system, its workload, or the location address space. In particu-
lar, no information is needed about the set of locations that may
be accessed by the workload, nor the distribution of accesses
to these locations. As a result, SHARDS sampling is effectively
stateless. In contrast, explicitly preselecting a random subset
of locations may require significant storage, especially if the
location address space is large. Often, only a small fraction of
this space is accessed by the workload, making such preselection
especially inefficient.

Although this basic approach can reduce the time and space
required to generate an MRC by several orders of magnitude,
it can still be improved. First, the required space grows slowly,
but isn’t bounded, making it hard to use in memory-constrained
environments. Second, choosing an appropriate sampling rate
can be challenging, since it implies an accuracy versus overhead
tradeoff that can be difficult to evaluate, especially in an online
system.

To address these issues, we developed a fixed-size version of
SHARDS that operates in constant space. The basic idea is that
instead of specifying the sampling rate R, we specify a maxi-
mum number of samples to track, smax. Placing a hard bound on
the sample set results in a constant-space algorithm. The basic
spatial filtering step operates exactly the same as before. But

now, if adding a new sample would exceed the space bound smax,
some existing sample must be evicted to make room.

We remove the sample with the maximum hash value, Tmax, clos-
est to T. The global threshold T is then lowered to Tmax since any
larger values cannot fit in the set, reducing the sampling rate R
dynamically. When the threshold is lowered, a subset-inclusion
property is maintained automatically; each location sampled
after lowering the rate would also have been sampled prior to
lowering the rate.

The subset-inclusion property is leveraged to lower the sampling
rate adaptively as more unique locations are encountered, in
order to maintain a fixed bound on the total number of samples
that are tracked at any given point in time. The sampling rate is
initialized to a high value; in practice R0 = 0.1 is sufficiently high
to achieve good results with nearly any workload.

As the rate is reduced, the counts associated with earlier updates
to the reuse-distance histogram need to be adjusted. Ideally, the
effects of all updates associated with an evicted sample should
be rescaled exactly. Since this would incur significant space and
processing costs, we opt for a simple approximation.

When the threshold is reduced, the count associated with each
histogram bucket is scaled by the ratio of the new and old sam-
pling rates, Rnew / Rold, which is equivalent to the ratio of the new
and old thresholds, Tnew / Told. Rescaling makes the simplifying
assumption that previous references to an evicted sample con-
tributed equally to all existing buckets—a reasonable statistical
approximation when viewed over many sample evictions and
rescaling operations. Rescaling is performed incrementally and
inexpensively, and ensures that subsequent references to the
remaining samples have the appropriate relative weight associ-
ated with their corresponding histogram bucket increments.

Evaluating SHARDS
With a constant memory footprint, SHARDS is suitable for
online use in memory-constrained systems, such as device
drivers in embedded systems. To explore such applications, we
developed a high-performance implementation, written in C,
and optimized for space efficiency. With our default setting of
smax = 8K, the entire measured runtime footprint—including code
size, stack space, and all other memory usage—is smaller than
1 MB, making this implementation practical even for extremely
memory-constrained execution environments.

We have deployed SHARDS in the context of the commercial
CloudPhysics I/O caching analytics service for virtualized
environments. Our system streams compressed block I/O traces
for VMware virtual disks from customer datacenters to a cloud-
based backend that constructs approximate MRCs efficiently.
A Web-based interface reports expected cache benefits, such as
the cache size required to reduce average I/O latency by speci-

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  25

FILE SYSTEMS AND STORAGE
Beyond Working Sets: Online MRC Construction with SHARDS

fied amounts. Running this service, we have accumulated a large
number of production traces from customer environments.

We analyzed 106 week-long traces, collected from virtual disks
in production customer environments with sizes ranging from
8 GB to 34 TB, with a median of 90 GB. The associated vir-
tual machines were a mix of Windows and Linux, with up to
64 GB RAM (6 GB median) and up to 32 virtual CPUs (2 vCPUs
median). In addition, we used 18 publicly available block I/O
traces from the SNIA IOTTA repository [6], including a dozen
week-long enterprise server traces collected by Microsoft
Research Cambridge [3].

In total, we analyzed a diverse set of 124 real-world block I/O
traces to evaluate the accuracy and performance of SHARDS
compared to exact methods. For each experiment, we modeled a
simple LRU cache replacement policy, with a 16 KB cache block
size—typical for storage cache configurations in commercial
virtualized systems.

To quantify the accuracy of SHARDS, we considered the dif-
ference between each approximate MRC, constructed using
spatially hashed sampling, and its corresponding exact MRC,
generated from a complete reference trace. An intuitive measure
of this distance, also used to quantify error in related work, is the
mean absolute difference or error (MAE) between the approxi-
mate and exact MRCs across several different cache sizes. This
difference is between two values in the range [0, 1], so an abso-
lute error of 0.01 represents 1% of that range.

The box plots in Figure 3 show the MAE metric for a wide range
of SHARDS sample set sizes (smax). For each trace, this distance
is computed over all discrete cache sizes, at 64 MB granularity,
corresponding to all non-zero histogram buckets. Overall, the
average error is extremely low. For smax = 8K, the median MAE is
0.0027, with a worst case of 0.017. The error for tiny sample sizes
is also surprisingly small. For example, with only 256 samples,
the error for 75% of the traces is below 0.02, although there are
many outliers.

Many statistical methods exhibit sampling error inversely pro-
portional to √n, where n is the sample size. Our data is consistent;
regressing the average absolute error for each smax value shown in
Figure 3 against 1/√smax resulted in a high correlation coefficient
of r2 = 0.98. This explains the observed diminishing accuracy
improvements with increasing smax.

Why does SHARDS work so well, even with small sample sizes
and correspondingly low sampling rates? Our intuition is that
most workloads are composed of a fairly small number of basic
underlying processes, each of which operates somewhat uni-
formly over relatively large amounts of data. As a result, a small
number of representative samples is sufficient to model the main
underlying processes. Additional samples are needed to properly
capture the relative weights of these processes. Interestingly, the
number of samples required to obtain accurate results for a given

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●
●●●●●●●●●●●●●●●
●

●

●
● ●

●

●●●●●●●

●●●●●●●●●

●●●●●●●●

●
●●

●
●●
●

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

256 512 1K 2K 4K 8K 16K 32K
Sample Size (smax)

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
M

A
E)

Figure 3: Error analysis. Mean absolute error calculated over all 124 traces
for different SHARDS sample set sizes. The top and bottom of each box
represents the first and third quartile values of the error; the thick black
line is the median. The thin whiskers represent the min and max error,
excluding outliers, which are represented by dots.

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%)

t01 (0.05%) t06 (0.33%) t08 (0.04%)

t14 (0.38%) t15 (0.10%) t18 (0.08%)

t19 (0.06%) t30 (0.06%) t31 (0.95%)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 40 80 0 500 1000 0 200

0 200 400 0 50 100 0 300 600

0 100 200 300 0 200 400 0 100 200

0 200 400 0 100 200 300 0 7 14
Cache Size (GB)

M
is

s
R

at
io

smax = 8K exact MRC

Figure 4: Example MRCs: exact vs. SHARDS. Exact and approximate
MRCs for 12 representative traces. Approximate MRCs are constructed
using SHARDS with smax = 8K. Trace names are shown for three public MSR
traces [3]; others are anonymized. The effective sampling rates appear in
parentheses.

26    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Beyond Working Sets: Online MRC Construction with SHARDS

workload may be indicative of its underlying dimensionality or
intrinsic complexity.

Figure 4 provides further qualitative evidence of SHARDS
accuracy for a dozen representative traces. In most cases, the
approximate and exact MRCs are nearly indistinguishable.
Each plot is annotated with the effective dynamic sampling
rate, indicating the fraction of I/Os processed, including evicted
samples. This rate reflects the amount of processing required to
construct the MRC.

Overall, quantitative experiments confirm that, for all work-
loads, SHARDS yields accurate MRCs, in radically less time
and space than conventional exact algorithms. Compared to the
sequential implementation of PARDA [4], a modern high-perfor-
mance reuse-distance algorithm, SHARDS requires dramati-
cally less memory and processing resources. For our trace set,
we measured memory reductions by a factor of up to 10,800x for
large traces, and a median of 185x across all traces. The compu-
tation cost was also reduced up to 204x for large traces, with a
median of 22x. For large traces, SHARDS throughput exceeds 17
million references per second.

Renewed Interest in MRCs
Recently, there has been renewed interest in algorithms for effi-
cient MRC construction, using a variety of different techniques,
which has been very exciting to see. For example, Saemundsson
et al. [5] grouped references into variable-sized buckets. Their
ROUNDER aging algorithm with 128 buckets yields MAEs up
to 0.04 with a median MAE of 0.006 for partial MRCs, but the
space complexity remains O(M).

Wires et al. recently created an alternate way of computing
MRCs using a counter stack [8]. In the closest matching test case
using the same large trace and an identical cache configura-
tion, Counter Stacks is more than 7x slower and needs 62x as
much memory as SHARDS with smax = 8K. In this case, Counter
Stacks is more accurate, with an MAE of only 0.0025, compared
to 0.0061 for SHARDS. Using smax = 32K, with a 2 MB memory
footprint, SHARDS yields a comparable MAE of 0.0026, still
approximately 7x faster, with a 40x smaller footprint. While
Counter Stacks uses O(log M) space, SHARDS computes MRCs
in small constant space. As a result, it is practical to use separate,
potentially concurrent SHARDS instances to efficiently com-
pute multiple MRCs tracking different properties or time-scales
for a given reference stream.

Scaled-Down Simulation
Like other algorithms based on Mattson’s single-pass method
[1], SHARDS constructs MRCs for caches that use a stack-algo-
rithm replacement policy, such as LRU. Significantly, the same
underlying spatial sampling approach can be used to simulate
more sophisticated policies, such as ARC [2], for which there are
no known single-pass methods to speed up analysis.

Our approach is to simulate each cache size separately, while
scaling down the simulations to regain efficiency. As with basic
SHARDS, input references are filtered using a hash-based sam-
pling condition, corresponding to the sampling rate R. A series
of separate simulations is run, each using a different cache size,
which is also scaled down by R. Figure 5 presents both exact
and scaled-down sampled MRCs for the public MSR web block
trace [3], for 64 simulated ARC cache sizes. With R = 0.001, the
simulated cache is only 0.1% of the desired cache size, achieving
huge reductions in space and time, while exhibiting excellent
accuracy, with an MAE of 0.002.

Encouraged by our results from generalizing hash-based spatial
sampling to model sophisticated cache replacement policies, we
are exploring similar techniques for other complex systems. We
are also examining the rich temporal dynamics of MRCs at dif-
ferent time scales.

Figure 5: Scaled-down ARC simulation. Exact and approximate MRCs for
the MSR-web disk trace [3]. Each curve plots 64 separate ARC simula-
tions at different cache sizes.

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  27

FILE SYSTEMS AND STORAGE
Beyond Working Sets: Online MRC Construction with SHARDS

References
[1] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,”
IBM Syst. J., vol. 9, no. 2 (June 1970), 78–117.

[2] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning,
Low Overhead Replacement Cache,” in Proceedings of the
2nd USENIX Conference on File and Storage Technologies
(FAST ’03), Berkeley, CA, 2003, USENIX Association,
pp. 115–130.

[3] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-
Loading: Practical Power Management for Enterprise Storage,”
Trans. Storage, vol. 4, no. 3 (Nov. 2008), 10:1–10:23.

[4] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan, “PARDA: A Fast
Parallel Reuse Distance Analysis Algorithm,” in Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’12), Washington, DC, 2012, IEEE
Computer Society, pp. 1284–1294.

[5] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfus-
son, “Dynamic Performance Profiling of Cloud Caches,” in
Proceedings of the ACM Symposium on Cloud Computing
(SOCC ’14), New York, NY, 2014, ACM, pp. 28:1–28:14.

[6] SNIA. SNIA IOTTA Repository Block I/O Traces: http://
iotta.snia.org/tracetypes/3.

[7] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad,
“Efficient MRC Construction with SHARDS,” in 13th USENIX
Conference on File and Storage Technologies (FAST ’15), Santa
Clara, CA, 2015, USENIX Association, pp. 95–110.

[8] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. War
field, “Characterizing Storage Workloads with Counter Stacks,”
in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’14), Berkeley, CA,
2014, USENIX Association, pp. 335–349.

Do you have a USENIX Representative on your university or college campus?
If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is
always looking for academics to participate. The program is designed for faculty who directly interact with students. We
fund one representative from a campus at a time. In return for service as a campus representative, we offer a complimen-
tary membership and other benefits.

A campus rep’s responsibilities include:
■ Maintaining a library (online and in print) of USENIX

publications at your university for student use
■ Distributing calls for papers and upcoming event

 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:
■ Be full-time faculty or staff at a four-year accredited university
■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with infor-
mation and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

