
www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  35

SYSADMIN

Hiring Site Reliability Engineers
C H R I S J O N E S , T O D D U N D E R W O O D , A N D S H Y L A J A N U K A L A

Operating distributed systems at scale requires an unusual set of
skills—problem solving, programming, system design, network-
ing, and OS internals—which are difficult to find in one person. At

Google, we’ve found some ways to hire Site Reliability Engineers, blending
both software and systems skills to help keep a high standard for new SREs
across our many teams and sites, including standardizing the format of our
interviews and the unusual practice of making hiring decisions by commit-
tee. Adopting similar practices can help your SRE or DevOps team grow by
consistently hiring excellent coworkers.

Google’s Site Reliability Engineering (SRE) organization is a mix of software engineers
(known as SWEs) and systems engineers (known as SEs) with a flair for building and
operating reliable complex software systems at an incredible scale. SREs have a wide range
of backgrounds—from a traditional CS degree or self-taught sysadmin to academic biochem-
ists; we’ve found that a candidate’s educational background and work experience are less pre-
dictive than their performance in interviews with future colleagues. Google’s hiring process
intentionally prevents teams’ managers from making hiring decisions, instead using a hiring
committee of engineers from across the organization to assess the merits of each potential
hire on a case-by-case basis.

Who We Look For
Ben Treynor, Google Vice President and Site Reliability Tsar, describes SRE as being “what
you get when you treat operations as if it’s a software problem”: a software engineering phi-
losophy (“write software to solve problems”) hybridized with an operations mission (“keep
the service running”). These two influences can be seen in the dual job titles within SRE—
SRE-Systems Engineer and SRE-Software Engineer—reflecting the different emphasis
with which individual SREs may approach the same problems: one may be most comfort-
able writing new software, while the other may tend to prefer fitting existing components
together into new and exciting architectures, but everyone can do some of both.

By “systems engineering,” we mean a discipline that takes a holistic approach to the connec-
tions between distinct software systems or services rather than either (1) the internals of
how to build a piece of software, where software engineering has tended to concentrate as a
field, or (2) how software artifacts are deployed onto specific hardware, which has been the
historic domain of system administration. Instead, systems engineers view the collection
of individual pieces, which may be built by many separate product development teams, as
a whole with properties distinct from its components. SEs tend to focus on how to monitor
services, identify and remove bottlenecks, manage and balance connections, handle data
replication, ensure data resiliency, and so on. This skill becomes essential at the scale at
which Google and other large software organizations operate.

A computational daemonol
ogist, Chris Jones works in San
Francisco as a Site Reliability
Engineer for Google App
Engine, a platform serving

over 28 billion requests per day. He was
previously responsible for the care and feeding
of advertising statistics, data warehousing,
and customer support systems, joining Google
in 2007. In other lives, Chris has worked
in academic IT, analyzed data for political
campaigns, and engaged in some light BSD
kernel hacking, picking up degrees in computer
engineering, economics, and technology policy
along the way. cdjones@google.com

Todd Underwood is Site
Reliability Director at Google.
Prior to that, he was in charge
of operations, security,
and peering for Renesys, a

provider of Internet intelligence services;
and before that he was CTO of Oso Grande,
a New Mexico ISP. He has a background in
systems engineering and networking. Todd
has presented work related to Internet routing
dynamics and relationships at NANOG, RIPE,
and various peering forums tmu@google.com

Shylaja Nukala is a Technical
Writer at Google, and she has
been leading the Site Reliability
Engineering (SRE) technical
writing team for six years. She

is involved in documentation, communication,
and training for SRE. Prior to Google, she
worked at Epiphany and Sony. She has a
PhD from the School of Communication and
Information, Rutgers University. She also
taught at Rutgers, Santa Clara, and San Jose
State universities. snukala@google.com

36    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

SYSADMIN
Hiring Site Reliability Engineers

Google’s preference for generalists and internal mobility meshes
well with our hiring bar for SWE candidates within SRE being
the same as that for our product development organizations—
engineers are able to move freely from the reliability organiza-
tion to other groups. We’ve found, however, that there’s a third
category of candidates who form a particularly valuable pool:
those who trade off some depth of experience in one field for
a breadth of experience in both fields. In Figure 1, the area in
the shaded region between the curve with acceptable tradeoffs
(which we call the “Treynor Curve”), the SE hiring bar, and the
SWE hiring bar shows this pool of “hybrid” SRE candidates.

What We Look For
We look for candidates who are smart, passionate about build-
ing and running some of the largest and most complex software
artifacts on the planet, and able to quickly understand how
something works that they may never have seen before. Since
we would like to scale the size of our systems much faster than
Google can hire SREs to work on them, the SRE approach to
problem resolution emphasizes automation, improving system
design, and building resilience into our systems so that we don’t
have to repeatedly fix the same problems; it’s also much more
interesting to find new failure modes, usually due to newly
launched systems or features. Accordingly, we try to find and
hire candidates wherever they are, regardless of background:
there are simply too few people with the right mindset and skills
for SRE to limit ourselves to candidates with conventional
backgrounds.

Every SRE, regardless of whether they’re an SE or SWE, needs
to have an understanding of the fundamentals of computing.
Unsurprisingly, we look for the ability to solve problems with
software, whether that’s been acquired from a textbook or at
the school of hard knocks. Similarly, troubleshooting skills and
the ability to unpack a problem into smaller pieces, identify
possible causes, triage, and do so systematically are essential,
whether that’s been acquired through debugging code, operat-
ing a network, building hardware, or in other, entirely unrelated
domains; the cognitive skills and approaches to problem-solving
are subject-matter agnostic and critical to have, regardless of a
candidate’s background.

We specifically do not look for “architects”—that’s a role that
simply doesn’t exist at Google: everyone in our engineering orga-
nizations both designs and implements. Similarly, prospective
candidates for managerial roles in Site Reliability must meet the
same technical bar as individual contributors, as well as under-
stand that management at Google is a different proposition from
that at many other companies: SRE line managers are typically
also technical contributors to their team, including being part of
an on-call rotation, in addition to their managerial responsibili-
ties in coordinating skilled and highly autonomous individual
contributors.

How We Interview
SRE interviews follow Google’s typical engineering interview
pattern: much like elsewhere in the industry, there is first a short
technical pre-screen with a recruiter; next, an initial phone inter-
view with an engineer, perhaps with a follow-up phone interview;
and then a day at one of our sites, doing four or five interviews,
each with an engineer. Each interview is intended to be a conver-
sation between peers rather than an interrogation: we strenuously
discourage brainteasers and trivia questions, as they provide
minimal insight into how a candidate thinks about problems.

Each SRE interviewer has a specified topic to cover—e.g.,
programming, UNIX internals, networks, or troubleshooting
and problem-solving—to ensure that we have a wide range of
assessments from interviewers, while minimizing duplication
[1]. The mix of topics varies based on the candidate’s self-
assessed strengths and weaknesses: there’s no point in spending
valuable interview time asking someone about their weaknesses,
only to discover that they were right when they said they didn’t
know much about a topic. Similarly, we try to match candidates’
strengths with those of their interviewers, so that they have a
more interesting conversation and there’s a better quality signal in
the resulting assessment. Ideally, each interviewer will discover
the limits of the candidate’s knowledge in their topic and see how
the candidate reasons and reacts when faced with problems they
have not previously encountered—that is, can they make reason-
able assumptions and extrapolations from what they do know?

Figure 1: Skills and hiring for SRE candidates

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  37

SYSADMIN
Hiring Site Reliability Engineers

At least one interview will involve programming in the can-
didate’s preferred language: while Google uses C++, Go, Java,
Javascript, and Python for most of its projects, we have SREs
who can read pretty much any language a candidate might want
to use. Candidates do not need to use one of the five languages in
their interview, as we expect that anyone who meets our hiring
bar is likely able to learn at least one of those languages fairly
quickly.

One of the interviews will be on “non-abstract large system
design” [2], in which they’re asked to concretely design a large-
scale system, such as a system to join different types of log
entries written in multiple datacenters for analysis. Simply
laying out boxes on a whiteboard and invoking magic technolo-
gies (“I’ll store everything in BigTable, since that’s what Google
uses”) to solve a problem isn’t sufficient: silver bullets are rarely
found when building real software systems, so it would leave
too much mystery about a candidate’s quality to accept answers
depending on them. Instead, we’re looking for candidates to be
able to provide realistic estimates of throughput, storage, and so
on for each component—while considering various tradeoffs for
reliability, cost, and difficulty of building the system. The ideal
candidate can not only reason about how each high-level com-
ponent fits together, but work through each layer in the design,
right down to the hardware underpinning it.

Afterwards, the interviewer provides a hire/no-hire recommen-
dation along with detailed written feedback explaining how a
candidate answered the questions and the strengths or weak-
nesses of those responses compared to others’.

If the interview feedback for a candidate is borderline, the
recruiter can ask a group of engineers to perform some quality
control and validation: Are additional interviews likely to be
needed? Is the interview panel sufficiently senior for the candi-
date’s experience? Does another topic need to be covered or an
interview topic repeated for some reason?

How We Decide
An unusual feature of Google’s engineering hiring process is that
the hire/no-hire decision is not made by a manager; instead, it’s
made by a hiring committee before going to senior management
for approval (if the decision was to hire). The committee mem-
bers are drawn from across the organization, including multiple
locations and teams within SRE.

A mix of SRE managers and individual contributors will read
the interview feedback each interviewer wrote and come to a
joint decision about whether the hiring bar for the role has been
met. Hiring committee meetings are characterized by extensive

debate on whether each candidate meets our organization-wide
hiring bar. The hiring committee has access to past scores and
hiring decisions for each interviewer, so it can decide how much
weight to put on an interviewer’s feedback given their past pre-
dictive track record.

Using a committee to make hiring decisions is a critically
important part of our process because it ensures that we have
an assessment that reflects the skills and capabilities we expect
our engineers to have, while maintaining common standards
between offices and parts of the organization to ensure internal
mobility. The committee’s diverse perspectives can also provide
a broader assessment of candidate strengths and weaknesses.

Removing the (prospective) hiring manager from the process
prevents the common management pathology of taking the first
warm body who seems vaguely competent to fill a vacancy or a
short-term need, compromising hiring standards at the expense
of the long-term health of the organization. In fact, allocation
of a new hire to a specific team in SRE always happens sepa-
rately, after the hire/no-hire decision is made. As a result, we
can expect our hiring quality across SRE to stay consistent over
time—or at least, be changed intentionally by management in
response to headcount availability—rather than simply choos-
ing a candidate who happened to apply for a particular opening
at the discretion of that team’s manager. As it happens, Google’s
practice is to hire candidates we believe to be better than our
average current employee [3], consciously accepting a higher
risk of false negatives (incorrect no-hire decisions) to reduce the
chance of false positives (incorrect decisions to hire).

Conclusion
Talented future SREs are scarce and hard to find; it’s often dif-
ficult to make a confident prediction about whether a given can-
didate will succeed as an SRE. We’ve found that standardizing
our hiring process so that we consistently cover a range of skills
essential for success in SRE and ensuring that all SRE candi-
dates are able to code regardless of their background in system
administration, systems engineering, or software engineering
are critical to guaranteeing a high level of mobility between SRE
teams and within organizations at Google.

Finding people who are simultaneously generalists comfortable
with encountering novel software systems and specialists with
sufficient technical depth in particular fields (e.g., software
engineering, networks, distributed systems) is even more diffi-
cult: by building an organization that takes each SRE’s indi-
vidual strengths—regardless of his or her place on the Treynor
Curve between systems engineering and software engineering—
and combines them, we’re able to have an organization which can
paradoxically bridge the two skills.

38    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

SYSADMIN
Hiring Site Reliability Engineers

Practices We’ve Found Helpful for Hiring SREs
Structure interviews to cover the topics essential to the SRE role, as appropriate for the candidate’s skills and strengths; assign a
specific topic to each interviewer.

◆◆ Build a pool of interview questions along with “gold standard”
responses, to provide a consistent subset of questions across
candidates.

◆◆ Ask about how to build concrete large-scale systems; avoid
brainteasers and trivia.

◆◆ Ask every SRE candidate to code something.

◆◆ Separate interviewing from hiring decisions.

◆◆ Make hire/no-hire decisions by a committee of engineers.

On Interviewers
Ideally, we would like every interview to be performed by
long-tenured, senior SREs who have done thousands of
interviews and have a perfect track record of predicting
hiring decisions; unfortunately, the volume of interviewing
and other demands on Senior Engineers’ time make this an
impossibility—and this would also make it impossible for
anyone else to become an experienced interviewer. Instead,
we try to populate an interview panel with a majority of
reasonably experienced interviewers whose feedback has
good predictive value, while still providing an opportunity
for newer interviewers to get practice in one of the inter-
view slots. Very new interviewers may “shadow” experi-
enced engineers’ interviews or “reverse shadow,” in which
one conducts the interview while the other observes: both
submit feedback, but only the experienced interviewer’s
feedback is used.

As engineers gain experience interviewing, they become
better able to determine candidate strength through more
exposure to interview candidates and common interview
responses, both good and bad; increased time working with
their peers to understand the skills expected of new hires;
and the opportunity to write assessments and receive
feedback from colleagues on those interviews. After some
time, we are able to evaluate their hiring recommenda-
tions and feedback for interview quality, consistency, and
predictive value.

Because phone interviews are a single point of failure—a
candidate’s rejection at this stage generally precludes fur-
ther consideration for that role for some time—we choose
phone interviewers from a relatively small pool of particu-
larly consistent interviewers trusted by the hiring com-

mittee, to try to make sure that we make good decisions
about who to invite for on-site interviews. This is intended
to ensure that candidates who make it to that stage have a
realistic prospect of making it through the interviews and
being hired, reducing the cost of interviewing: each on-site
candidate costs at least four hours for the interviews them-
selves, plus time spent on writing feedback and reviewing it
in the hiring committee.

We have an organized pool of interview questions with
canonical answers we’ve seen from past candidates for
interviewers to draw upon. This makes it easier for newer
interviewers to get started and provides a consistent subset
of questions for the hiring committee to use in compar-
ing candidates, although interviewers are free to add their
own technical questions. Over the course of an interview,
an interviewer refines and increases the technical depth
of the conversation to determine the candidate’s depth of
understanding, so that the pool is used more as a starting
point for further discussion and elaboration rather than
being a list of trivia questions to be checked off in sequence.
Each interview is thus unique, though it follows a common
pattern.

Several locations with SRE teams have a regular “Interview
Club” group, where SREs can try out potential interview
questions to see how they work in practice and to get feed-
back from experienced interviewers. SREs are also encour-
aged to occasionally observe hiring committee meetings.
They may also receive comments from the hiring committee
on their interview notes to help make their future feedback
more useful or might mention that a particular approach to
an interview question worked well.

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  39

SYSADMIN
Hiring Site Reliability Engineers

Acknowledgments
This article was based on a conversation between Gary Arne-
son, Zoltan Egyed, Chris Jones, and Todd Underwood. Thanks
to Dermot Duffy, David Hixson, Alex Matey, Niall Murphy, and
Lucas Pereira for their invaluable comments.

Resources
[1] See Daniel Kahneman, “Thinking, Fast and Slow” (2011)
for further discussion of using a structured hiring format
instead of making intuitive judgments; also Lazlo Bock’s
Work Rules: https://www/workrules.net.

[2] Google SREs often teach classes on non-abstract large
system design at LISA and other venues, featuring exercises
where small groups solve design problems much like those
encountered by interview candidates.

[3] Peter Norvig: googleresearch.blogspot.com/2006/03/
hiring-lake-wobegon-strategy.html.

On Process
T O D D U N D E R W O O D

It’s reasonable to ask why Google uses such an elaborate
process to hire people. Some other companies manage to hire
people somewhat or much faster than Google. Perhaps there
should be a model of quick hire and, if things aren’t work-
ing out, quick fire. There are a number of reasons why this
cannot work well at Google and probably doesn’t work well at
most other places, either.

As we pointed out, we hire generalists who will likely be part
of several teams over their careers at Google. It’s critically
important that our hiring standard not be lowered by an
individual hiring manager’s short-term need for staffing.
The easiest way to avoid this temptation while maintaining
uniform and high standards is to make the hiring decision
through a committee that excludes the hiring manager.

Additionally: the learning curve at Google is quite high. Our
software stack is sophisticated, fragile, complex, and power-
ful, and it takes quite a while to learn it. It therefore takes
months before it is apparent whether a new hire is doing well.
By the time a bad fit is obvious, we may have made an invest-

ment of many months. This necessarily encourages us to be
much more conservative than some other employers about
hiring decisions.

Finally, there’s the very serious issue of bias. Hiring decisions
made quickly by individuals often result in hiring people who
are just like those doing the hiring. The technology industry
has a bias problem, and we are committed to doing what we
can to fix it. Some of the things we have learned about avoiding
bias in decisions, especially where that bias is unconscious,
is that making decisions as a group according to articulated
standards helps. It also helps to justify the decision and know
that you’ll have to justify the decision in advance. By incorpo-
rating these aspects into our process, we hope to make deci-
sions that add diversity.

Hiring decisions made quickly by a hiring manager according
to no articulated standards might work well at some organi-
zations, but we have come to believe that consistently hiring
well is critically important to us, and employment is critically
important to most of our employees. Taking an appropriate
amount of time to make sure there is a reasonable fit makes
good sense for us.

