
40    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

SYSADMIN

The Systems Engineering Side of Site
Reliability Engineering
D A V I D H I X S O N A N D B E T S Y B E Y E R

In order to run the company’s numerous services as efficiently and
reliably as possible, Google’s Site Reliability Engineering (SRE) orga-
nization leverages the expertise of two main disciplines: Software

Engineering and Systems Engineering. The roles of Software Engineer
(SWE) and Systems Engineer (SE) lie at the two poles of the SRE continuum
of skills and interests. While Site Reliability Engineers tend to be assigned
to one of these two buckets, there is much overlap between the two job roles,
and the knowledge exchange between the two job roles is rather fluid.

The collaborative SWE/SE engineering approach was popularized in the Silicon Valley
environment, but is now common to locations characterized by a high density of software
engineering requiring an operational component. A hybridization of the two skill sets is also
demonstrated by lone individuals who hold together complicated software systems by sheer
force of will. While Software Engineering is generally well understood in the tech world,
Systems Engineering remains a bit more nebulous. What exactly is Systems Engineering at
one of these companies? This article takes a closer look at Systems Engineers: what they are,
what they do, and how you might become one.

Characteristics of a Systems Engineer
The task of defining the exact characteristics of a Systems Engineer at Google, or at any
other Silicon Valley tech company that uses classifications like “Developer Operations,” is
problematic. Informally, a Systems Engineer might be described as someone who enjoys
discovering particularly difficult problems and applying their problem-solving skills in
uncharted territory. A Systems Engineer regularly undertakes tasks like dismantling soft-
ware or hardware, re-engineering and optimizing their design, or finding new uses for the
components. Traditional wisdom dictates that “you know a Systems Engineer when you see
one.” However, this definition fails to either permit a Systems Engineer to self-identify or to
become a better Systems Engineer. Nor does it help tech companies to create a satisfying job
ladder and career progression for Systems Engineers.

Therefore, pinning down a set of characteristics particular to a Systems Engineer is a neces-
sary and useful exercise.

A Systems Engineer

…uses the scientific principles of experimentation and observation to build a body of
knowledge that affects the architecture and design of the system as a whole.

Complex and ambiguous problems can be solved by:

1.	 Breaking down the problem into smaller components.

2.	 Testing assumptions about these components.

3.	 Continuing in this vein of investigation until a root cause is identified.

David Hixson is a Technical
Project Manager in the Site
Reliability organization at
Google, where he has been for
eight years. He currently spends

his time predicting how social products at
Google will grow and trying to make the reality
better than the plan. He previously worked as
a system administrator on High Availability
systems and has an MBA from Arizona State.
usenix@dhixson.com

Betsy Beyer is a Technical
Writer specializing in
virtualization software for
Google SRE in NYC. She
has previously provided

documentation for Google Data Center and
Hardware Operations teams. Before moving
to New York, Betsy was a lecturer in technical
writing at Stanford University. She holds
degrees from Stanford and Tulane.
bbeyer@google.com

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  41

SYSADMIN
The Systems Engineering Side of Site Reliability Engineering

In addition to this troubleshooting skill set, a Systems Engineer
must have the willingness to chase a problem through the mul-
tiple layers beyond its surface, acquiring the knowledge neces-
sary to conduct the investigation along the way. Willingness to
learn new technologies or techniques is critical to pursuing each
new investigation.

…has an actionable skepticism towards layers of
abstraction.

At least a few layers of abstraction are necessary in order to
deal with the complexity in the world around us. However, when
a Systems Engineer’s expectations of how a certain system
should perform are violated, the engineer must figure out why.
The investigative effort can focus on determining the causes of
existing problems, avoiding future problems, or finding improve-
ments where no one has looked before.

...focuses on the connections between the components
within the system as much as focusing on the components
themselves.

Understanding the interactions between each system element
is critical to building or troubleshooting systems that scale.
Decisions about how communications are passed between the
elements can have extreme effects on the overall stability of the
system.

...knows many ways to not solve a problem, rather than one
perfect way to solve the problem.

A perfect solution to a problem is extremely rare. Instead, choos-
ing the best engineering solution requires tradeoffs between
many different elements. Deliberately evaluating and making
these tradeoffs is key to building a stable and scalable system
or to identifying problems in an existing system. To state this
principle another way: success is probably a corner case of the
possible failure modes of a complex system.

Differences Between Software Engineering, Sys-
tem Administration, and Systems Engineering
The fundamental differences among three core specializations
in creating and operating software at tech companies—Software
Engineering, System Administration, and Systems Engineer-
ing—fall into three main categories: approaches to problems,
academic background and professional communities, and career
progression.

Approaches to Problems
The scenario presented in the simple drawing to the right
(Figure 1) would be approached in very distinct manners by an
archetypical SWE, SA, and SE. In practice, a successful Site
Reliability Engineer is expected to use a combination of these
approaches.

An SWE would focus on constructing boxes that have predict-
able behavior and that operate as efficiently as possible. Soft-
ware needs to:

◆◆ Turn requests into responses.

◆◆ Call the database via the appropriate API.

◆◆ Optimize the schema to reflect the kinds of queries that will be
made.

A combination of language choices, frameworks, unit tests, load
testing, and a variety of best practices make these operations
more likely to work effectively.

Sysadmins generally approach their operational responsibilities
with operational solutions. This diagram would prompt an SA to
think about the infrastructure required to actualize the service
represented and manage the operational aspects, considering
questions such as:

◆◆ What hardware is needed?

◆◆ What software is implied but not specified?

◆◆ How do we get all of these operations to run at the same time in
a supportable way?

A wide variety of tasks not depicted in the drawing come into
scope: OS deployment, backups, security, user administration,
configuration management, logs, monitoring, performance tun-
ing, capacity planning, and so forth.

Systems Engineers generally approach operational requirements
with a software or system approach. This diagram would prompt
an SE to focus on the lines connecting the sets of boxes and the
overall experience represented in the diagram more than on the

Figure 1: Generic application architecture

42    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

SYSADMIN
The Systems Engineering Side of Site Reliability Engineering

boxes themselves. For example, an SE might ask the following
questions:

◆◆ If multiple front ends are employed, how do we shard incoming
traffic?

◆◆ How do we replicate databases, and how do we manage connec-
tions, failover, hotspots, etc.?

◆◆ Do we replicate databases globally, in the same datacenter, or
on the same machines?

◆◆ What changes are we sensitive to in terms of impacting avail-
ability or performance?

An SE’s scope encompasses everything from language choice to
networking to hardware platforms. However, the SE considers
the code in less depth than would an SWE, and the machines in
less depth than would an SA.

Academic Background and Professional Communities
Software Engineering is taught through a variety of academic
paths, ranging from elementary school courses to doctoral
programs. The academic community has produced a substan-
tial body of respected work, and research into various facets of
computing continues to advance the state of the art. Ongoing
advancements in computer science, performed by a thriving
community spanning multiple industries, continually facilitate
the authoring of better code both through technology and best
practices.

System Administrators usually receive some level of profes-
sional training, which normally doesn’t occur through tra-
ditional academic institutions, or at least not at the level of a
degree program. Much of an SA’s training and certification is on
the job and focuses on specific hardware or software configura-
tions from specific vendors. Therefore, an SA’s training risks
becoming highly specialized and may be outdated fairly quickly.
A large body of documentation focuses on the practice of the SA
job (e.g., best practices for accomplishing specific tasks), but there
is little writing that explains the philosophy behind the job. SA
support communities exist, but are heavily fragmented because
SA work is very specialized and concerns quite specific focus
areas, such as backups, user management, storage, and so on.

Systems Engineering is more multi-disciplinary than Software
Engineering or System Administration, meaning that it ben-
efits heavily from academic study, but doesn’t necessarily align
with a typical degree program that focuses on depth rather than
breadth. SEs benefit from increasing their skills in computer
science or other areas of engineering, but these fields don’t rep-
resent the whole of an SE’s work. Academic disciplines dubbed
“Systems Engineering” do exist, but typically don’t focus on the
kinds of work that information technology companies expect.
There are communities which overlap with the situations faced
by SEs, but the discussions of such communities tend to be
far-ranging and cover the union of several different complex

areas. As a result, the audience that can usefully sympathize or
contribute to solutions tends to be rather limited.

Career Progression
SWE positions exist at every level in a job ladder, from those able
to code “hello world” to the engineers in charge of inventing the
technologies of the future. Similarly, SWE positions exist across
an incredible variety of available technologies and scope—an
SWE might focus on writing custom firmware for some exotic
device, designing a new programming language, building Sky-
net, or writing an iOS app that issues reminders to buy groceries.

The SA ladder often starts with a help desk position or work
servicing computers, advances to managing or tuning complex
services, and further advances to managing networks of com-
puters. Advancement is generally either one of scale—extending
up to controlling thousands of computers—or depth—requiring
expertise in managing a smaller number of much more complex
systems.

The SE suffers from not having a low ladder rung from which to
ascend. A productive SE must have the skills and experience that
stem from working on real problems. Subsequently, an SE likely
begins on either an SWE or SA ladder, at some point recognizing
more of a cross-functional calling and branching off into an SE
role. A typical SWE to SE trajectory entails either working on
loosely coupled systems, or needing to tune a software project
for a very specific role that crosses into computer hardware or
networking territory. A typical SA to SE trajectory entails either
fitting together a wide variety of components that operate out-
side of SA documentation, or needing to understand and modify
software in interesting ways.

At the apex of the Silicon Valley job ladders, the SE and SWE
jobs merge back together, since the largest and most complicated
software problems cross so many disciplines and technologies
that the leaders of such projects need to understand how all of
their components fit together. These engineers are dubbed Soft-
ware Engineers or Principal Engineers, but no element of a given
system is outside of their scope—everything from software,
to networking, to hardware choices are within their purview.
Because pushing the frontiers of technology is rarely conducted
in just one dimension, the tradeoffs between these choices need
to be conducted with as much flexibility and understanding as
possible. SRE at Google works to push this merger of skills early
in engineers’ careers in order to provide them with opportunities
to impact or create globally distributed systems.

The SE Approach to Problems
The manner in which an SE approaches a problem varies from
person to person and depends on the service being investigated,
but a few SE-specific skills and thought processes are quite
common. Problem-solving begins with figuring out how a given

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  43

SYSADMIN
The Systems Engineering Side of Site Reliability Engineering

system is supposed to work and/or the expected outcome of
the system. An SE’s investigative approach starts at the unex-
pected output or outcome and then traverses the system until
the problem is resolved. At each step in the investigation, the SE
contemplates the expected event or outcome versus what actu-
ally occurs. When the expected and the actual don’t align, the SE
digs deeper.

An SE doesn’t just investigate correctness, as problems fre-
quently split off into much less obvious areas such as how to
avoid latency tails, the construction of systems that are resilient
to failure conditions, or the design of systems that can run under
extremely high levels of load. At each stage of investigation, it is
critical to not just understand what should happen, but to create
tests to verify that a given event occurs in the expected manner
and with no side effects worthy of consideration. Any unex-
pected event is an opportunity to deconstruct the component,
be it software or hardware, and repeat the process in order to
understand the event at a lower level of abstraction.

The skills espoused by an SE can be vital in bringing an idea
to fruition in a way that is scalable, performant, and gener-
ally in alignment with the expectations of all players involved.
Unfortunately, success in the areas of SE expertise is frequently
difficult to detect, particularly by those who aren’t deeply
involved in the investigative process and resulting decisions. At
the end of the day, success is rarely attributed to the integration
between system components (an operation performed by the
SE), but rather to whomever built its key components (the SWE).
Although Google SRE works hard to correct this anti-pattern by
raising the level of understanding and appreciation of SE tasks,
Systems Engineering is a good career choice for those seeking
the satisfaction afforded by intensive problem solving, but is
not an attractive role for those seeking recognition outside their
immediate team.

The deliverable of an SE is unlikely to be a body of code com-
parable to that of a software engineer. Instead, the job of an SE
entails the thought process and work necessary to either make
a given system function as intended, or to build elegant solu-
tions to new problems. The important contribution of an SE is
the improvement to the system as a whole, not the list of actions,
and quality and effectiveness must be measured by the improve-
ment of an entire system over time, rather than the delivery of a
particular, narrow task. The deliverable may be just a few lines
of code, or even a setting on some obscure piece of networking
hardware that ends up providing value [1]. Subsequently, evalu-
ating an SE’s overall performance or contribution to any given
project is difficult. While the SE role is potentially higher impact
than that of an SWE or SA, it is a difficult role to manage, and
career advancement paths aren’t always obvious.

Resource
[1] For more context on SE deliverables, see snopes.com:
Know Where Man: http://www.snopes.com/business/genius
/where.asp.

Becoming a (Better) SE
To pursue work (or improvement) as an SE, start by building
enough depth in one area to provide a basis from which to under-
stand how the pieces of your system interact. You can begin such
an investigation from either an SA or an SWE background. Note
that if you’re pursuing an SE role at the launch of your career,
a basis in software engineering may be advantageous, as the
available education options are both more comprehensive and
more readily available. That being said, building your SE skill set
requires refusing to acknowledge that a system problem lies out-
side of your scope or control. Follow networking problems over
the network, chase performance problems out of your code and
into the hardware, or dissect an application to figure out how it
works and then improve the application. Whenever a system vio-
lates your expectations of how it should perform, figure out why.
Working with or contributing to open source projects is one great
way to improve your SE-related skills. Systems Engineers tend
to love open source, as it enables them to pry open a black box
and shine a light upon its inner workings to figure out exactly
why components behave the way they do. Growing your software
engineering skills will help with career advancement, as these
skills enable a deeper engagement with the software components
that comprise the systems with which SEs work.

Fundamentally, skill as a Systems Engineer comes from
satisfying your curiosity over and over again, and accumulat-
ing that experience to continually improve your investigative
skills. Eventually, this accumulated experience can inform how
you build new systems. From day one, incorporate the system
monitoring intended for your final product. Design systems that
expose their side effects in a way that makes those effects easy
to understand later. Document expected outcomes and your
assumptions about any given system, in addition to what might
be expected if you violate those assumptions.

For those who possess an abundance of curiosity and a willing-
ness to constantly dig into uncertainty and complexity, Systems
Engineering can be a thoroughly enjoyable and rewarding career
path. The SE role has matured into a viable profession, and the
prospects for SEs will likely continue to grow in the future. More
and more companies, particularly those outside the traditional
tech world, will need Systems Engineers to build and improve
the complex systems required to sustain their operations.

