
www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  69

COLUMNS

iVoyeur
Bridge Building

D A V E J O S E P H S E N

Dave Josephsen is the some
time book-authoring Developer
Evangelist at Librato.com. His
continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

For the last year I’ve worn the title “Developer Evangelist,” which aside
from the anxiety you’d expect to accompany any large, sudden, and ill-
considered career transformation, has been a fantastic experience.

I’d estimate that about a third of my time is spent in a sort of forensic exploration of my own
engineering team. I comb through GitHub commit logs, chatroom scrollback, and sometimes
interview my coworkers in search of narratives that I think might become good conference
talks, or blog posts. Yes. They actually pay me to do this.

Once I have a story I think is interesting, I work up a proposal that describes it, and then I
go about trying to find a conference that would be a good fit for the story. A talk about how
we arrived at our data storage schema might interest the attendees of LISA, while a story
about a microservices re-architecture might be more interesting to the audience at Velocity.
I submitted over 40 CFPs in 2014, and wound up giving 12 conference talks last year—a stag-
gering number, at least to me—and every single time I was surprised by what the conference
organizers accepted and rejected.

Being an interloper in their midst—someone invited from the outside to tell a story—accentu-
ates the otherness between us and awakens in me the anthropological observer. I see micro-
community everywhere these days, a side effect of my almost weekly personal interaction
with these regional, fleeting, ad hoc flocks of people who compute, but in some ever slight but
critically important way differ from how I compute.

Entire conferences of Software Architects, or people who Ruby. Pythonists focused on data
science, or PHP mobile Web developers, or software engineers fighting for diversity, all the
same, and yet drastically different. Like Bedouin brought suddenly together by the hundreds
or thousands for a few short days. The punctuated equilibrium of nerd community evolution.
Each event feels so rare, and yet there are so many nerd microcommunities that their gather-
ings occur by the thousands each year. Even among each of them, there are smaller micro-
communities—groups that cluster around this or that tool, methodology, or model of thought.

When Turing wrote about universal machines, I wonder whether he had any notion of
the heterogeneity of human social interactions they would foster. Speaking of universal
machines, consider the JVM, for example. Not only does the JVM itself have its own confer-
ence [1], and therefore its own community, but nearly 20 different programming languages
run on top of the JVM [2], almost all of which have their own conference and community.

There’s certainly some overlap, but it’s difficult to imagine one person who is both an avid
participant in the Rhino AND Jacl communities (much less a JVM uber-linguist who par-
ticipates in them all). So we can think of the JVM as a sun at the center of a solar system of
communities. Many of which, like JRuby, simultaneously orbit other stars.

Here is yet another way that the JVM is a fascinating piece of software: it creates tribalism
by encouraging dissent and competition with respect to things like language semantics,
while at the same time giving everyone a common ground to stand on by abstracting away
the uncontroversial: memory management, parallelism, and garbage collection.

70    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

COLUMNS
iVoyeur: Bridge Building

Given the (supposed) topic of this column, monitoring might
have occurred to you as another common ground the JVM
languages share. To be sure, JMX provides a single means of
extracting monitoring and metrics data from any language or
application that runs on the JVM. But monitoring is also a com-
munity of its own, with its own fair share of dissent and com-
petition. This month, I thought we’d look at jmxtrans, a small
tool that bridges these worlds, by extracting JVM metrics and
shipping them to the monitoring tool of your choice.

In its own words, jmxtrans is: “the missing connector between
speaking to a JVM via JMX on one end and whatever logging/
monitoring/graphing package that you can dream up on the
other.” If you aren’t familiar, Java Management Extensions
(JMX) is the formally provided channel for exporting metrics
from applications running inside the JVM to other processes.
Jmxtrans acts as a glue-layer between an application that
exposes data via JMX and various monitoring and metrics tools
that import and make use of that data.

As you can see in Figure 1, jmxtrans is a specialized centralized
poller. It periodically polls a running JMX process, grabbing the
metrics you’re interested in and emitting them (via a series of
output writers) to your monitoring system. Because it polls JMX,
it obviously requires that JMX be enabled on the JVM that’s
running your application.

You can enable JMX by specifying several options to the JVM
when you start it. The simplest (and also most insecure) configu-
ration consists of these four options:

◆◆ Djava.rmi.server.hostname= <IP Address>

◆◆ Dcom.sun.management.jmxremote.rmi.port= <PORT>

◆◆ Dcom.sun.management.jmxremote.ssl=false

◆◆ Dcom.sun.management.jmxremote.authenticate=false

A minimally useful configuration should use authentication and
SSL, both of which depend on your environment. See the official
JMX documentation for secure configuration information [3].

Once enabled, the JMX service will be available on the IP and
port that you specify. Many different tools can interact with
a running JMX service, including jmxtrans, jvisualvm, and
JConsole.

Because the specific metrics available depend on what your
application exports, you’ll need to use a tool like JConsole to
explore the JMX service. I’m using it in Figure 2 to explore
some of the metrics exported by an Apache Cassandra server
with JMX enabled. JConsole is included with the JDK, so you
shouldn’t need to download or install anything to get it running.
Connect to a running JMX instance with:

jconsole <IP>:<PORT>

The names in the main window will correspond to the metric
names I’ll refer to later when I configure jmxtrans. The hierar-
chical list in the left windowpane corresponds to jmxtrans’s obj
configuration attribute, while the list on the right corresponds to
attr names.

Even if your application doesn’t export any metrics at all, JMX
will still emit helpful memory-management, CPU, and thread-
usage metrics from the JVM, as you can see in Figure 3. These
metrics are otherwise difficult to obtain from a running JVM.

Once you have JMX enabled for the application you want to
monitor, and you’ve decided on the metrics you’re interested in
graphing, you’re ready to install jmxtrans.

How Do I Install It?
Jmxtrans is hosted on GitHub. You can download prepackaged
versions for Red Hat or Debian systems, or a source code zip file
from the downloads page [4]. The Red Hat and Debian packages
both ship with an init script, which makes it easy to start or stop
the jmxtrans service on those systems, and a config file in /etc
that you can use to modify the behavior of the jmxtrans daemon
itself (including its polling interval).

The jmxtrans service reads from configuration files placed in
/var/lib/jmxtrans. Here’s an example of a JSON config for

Figure 1: Jmxtrans follows the centralized polling pattern. Figure 2: Exploring Cassandra’s JMX metrics with JConsole

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  71

COLUMNS
iVoyeur: Bridge Building

jmxtrans that’ll capture a couple of Cassandra metrics that refer to
compactions on a single Cassandra node, and send them to Librato.

{

 “servers” : [{

 “host” : “192.168.50.100”,

 “port” : “7199”,

 “queries” : [{

 “obj” : “org.apache.cassandra.

db:type=CompactionManager,*”,

 “attr” : [“PendingTasks”, “TotalBytesCompacted”],

 “outputWriters” : [{

 “@class” : “com.googlecode.jmxtrans.model.output.

LibratoWriter”,

 “settings” : {

 “username” : “dave@librato.com”,

 “token” :

“cd4b234567545cb2453243qcbt546dbd43d5371”

 }

 }]

 }]

 }]

}

Jmxtrans uses output writers to emit metric data to a specific
monitoring system. In the example above, we’re using the
Librato output writer, but many are available to push metrics to
systems like StatsD, Graphite, RRDtool, and flat-files. Since the
outputWriters attribute is a JSON array, you can specify more
than one output writer for a given series of metrics, and jmxtrans
will emit to all of them simultaneously. You should start to see
data in your interface of choice in a few seconds (Figure 4).

Jmxtrans will also emit stack-traces and error logs into a log
file in /var/log/jmxtrans. Check this file if you don’t begin to see
metrics appear in a few seconds.

Caveat Emptor
At the time of this writing, the jmxtrans project was in the pro-
cess of moving their build process from Ant to Maven, and, as a
result, the Librato output writer was not included in the pack-
aged versions of jmxtrans. If you’re installing jmxtrans from one
of the pre-packaged distributions, and the Librato writer is not
available, you can work around it by cloning this [5] jmxtrans
repository, and building and installing it manually with:

maven clean install -Pdpkg

This notion I’ve been riffing on, that compelling software
inevitably begets community, implies another way of looking at
glue-code like jmxtrans in general. These tools, the ones that
everyone uses but none of which will ever have anything like a
conference of its own, form the substrate that joins communities
together. As someone who has spent many years working on glue
code, that’s a comforting thought.

Take it easy.

References
[1] JVM Language Summit: http://openjdk.java.net/projects/
mlvm/jvmlangsummit/.

[2] List of JVM Languages: http://en.wikipedia.org/wiki/
List_of_JVM_languages.

[3] Secure installation of jmxtrans: http://docs.oracle.com/
javase/8/docs/technotes/guides/management/agent.html.

[4] Jmxtrans download page: https://github.com/jmxtrans/
jmxtrans/downloads.

[5] Jmxtrans developer fork: https://github.com/praste/
jmxtrans/tree/dpkg.

Figure 3: JMX automatically exports CPU, thread, and memory for every
application that runs on the JVM.

Figure 4: Data should appear in your metrics interface within 30 seconds.

